

www.usn.no

Faculty of Technology, Natural sciences and Maritime Sciences
Campus Porsgrunn

PRH612-1 18V Bachelor thesis

Real-Time Notification System
for Electrical Substations

IA6-6-18

www.usn.no

The University of South-Eastern Norway takes no responsibility for the results and conclu-

sions in this student report.

Course: PRH612-1 18V Bachelor thesis, 2018

Title: Real-time notification system for electrical substations

This report forms part of the basis for assessing the student’s performance in the course.

Project group: IA6-6-18 Availability: Open

Group participants: Shing Wai Chan

Sander Heldal

Casper Nilsen

Lars Kittang Remme

Supervisor: Hans-Petter Halvorsen

Project partner: Skagerak Energi

Approved for archiving: __

Summary:

The aim of the project was to develop a software solution for Skagerak Energi. The new solution

is meant to be a replacement of an existing system that is used by technicians to notify the oper-

ating centre about which electrical substations they are working on. It is there to ensure the safety

of the workers by giving the operating centre an overview of the ongoing jobs.

The system primarily consists of three parts: database, website and mobile application. The mo-

bile and web application were developed in Visual Studio using Xamarin and ASP.NET Web

Forms. MS SQL Server was used for database management. The cloud database and services for

the applications were hosted on Microsoft Azure. As well as a connection to Skagerak’s AD,

allowing the applications to authenticate users.

The project resulted in a complete system named GridNote. The user-friendly mobile application

lets technicians notify the operators directly by using the app. The web application for the oper-

ators show all active work in a well-presented manner. The database stores data from both ap-

plications using cloud services which also acts as the communication medium.

Preface

3

Preface
This bachelor thesis is written by four students at the University of South-Eastern Norway

during the last semester of the engineering course Computer Science and Industrial Automa-

tion. The thesis is documentation for a product which will be used by the electrical power

company Skagerak Energi. The product is called GridNote and consists of a web application,

a mobile application and a database.

Each phase in the development process focused on creating a deployable product. Having basic

knowledge about system development and programming is an advantage for the reader. Code

elements such as methods and classes are written in italic text in this report. The language of

the mobile and the web applications is in Norwegian, as requested by the project partner.

The system was developed in close collaboration with Skagerak Energi, mostly through our

contact person, Marius Dolven, but also the company’s IT department. All source code for the

GridNote system can be found as a compressed file in the following link: https://www.drop-

box.com/sh/pjfusyjyyhzpy0t/AACWmqn-FdKf5UxLBaO6f4tDa?dl=0

We would like to express our gratitude towards the project supervisor, Hans-Petter Halvorsen,

for all the guidance and support. We would also like to thank our project partner Skagerak

Energi, and especially Marius Dolven, for guidance and feedback during work on the thesis.

Tools used:

• Android Emulator

• Azure Cloud Service

• Google Chrome – version 66.0.3359.139 64-bit

• Microsoft Excel

• Microsoft Project

• Microsoft Visio

• Microsoft Word

• SQL Server 2014

• Visual Studio 2017

• Visual Studio Team Services

Porsgrunn, 16.05.2018

______________________ ______________________

 Shing Wai Chan Sander Heldal

 ______________________ ______________________

 Casper Nilsen Lars Kittang Remme

https://www.dropbox.com/sh/pjfusyjyyhzpy0t/AACWmqn-FdKf5UxLBaO6f4tDa?dl=0
https://www.dropbox.com/sh/pjfusyjyyhzpy0t/AACWmqn-FdKf5UxLBaO6f4tDa?dl=0

Nomenclature

4

Nomenclature

1NF – First Normal Form

2NF – Second Normal Form

3NF – Third Normal Form

AAD – Azure Active Directory.

AD – Active Directory, (Directory Service for Windows Domain networks).

ADAL – Active Directory Authentication Libraries

AJAX – Asynchronous JavaScript And XML

API – Application Programming Interface

App – Application

ASP.NET Server-side web application framework.

BCNF – Boyce and Codd Normal Form

CIL – Common Intermediate Language

CLI – Common Language Infrastructure

CLR – Common Language Runtime

CSS – Cascading Style Sheet

ECMA – European Computer Manufacturers Association

ETRS89 – European Terrestrial Reference System 1989 (also called Euref 89)

GPS – Global Positioning System

GUI – Graphical User Interface

HSE – Health, Safety and Environment

HTML – Hypertext Mark-up Language

HTTP – Hypertext Transfer Protocol

IDE – Integrated Development Environment

IP – Internet Protocol

JSON – JavaScript Object Notation

MIT – Massachusetts Institute of Technology

MS – Microsoft

MVC – Model View Controller

MVP – Minimum Viable Product

NuGet – Microsoft supported mechanism for sharing code in packages.

Nomenclature

5

OS – Operating System

PCL – Portable Class Libraries

SLA – Service-Level Agreement

SMS – Short Message Service

SQL – Structured Query Language

TCP – Transmission Control Protocol

UI – User Interface

UML – Unified Model Language

URI – Uniform Resource Identifier

URL – Uniform Resource Locator

UTM – Universal Transvers Mercator (Coordinate system)

UWP – Universal Windows Platform

UX – User Experience

VS – Visual Studio

VSTS – Visual Studio Team Services

WBS – Work Breakdown Structure

WGS84 – World Geodetic System 1984

Contents

6

Contents

Preface ... 3

Nomenclature .. 4

Contents ... 6

Part I. Planning & Research ... 9

1 .. Introduction ... 10

1.1 Scope ... 10
1.2 Project Workflow ... 11
1.3 Reading Guidelines .. 11

2 .. System Overview .. 12

2.1 Planned Solution ... 12
2.1.1 Web Application .. 12
2.1.2 Mobile Application .. 12

3 .. Website – Planning and Design ... 13

3.1 Requirements .. 13
3.1.1 Diagrams .. 13

3.2 User Experience .. 14
3.3 User Interface .. 14

3.3.1 Login Page ... 14
3.3.2 Status Page .. 15
3.3.3 History page... 16

4 .. Mobile Application – Planning and Design ... 17

4.1 Use Case Diagram .. 17
4.2 User Experience .. 17
4.3 Application Design ... 18

4.3.1 Login ... 18
4.3.2 Select Station... 19
4.3.3 Select Time .. 20
4.3.4 Status ... 20

5 .. Xamarin .. 21

5.1 Native ... 21
5.2 Common Language Infrastructure .. 22
5.3 Cross-Platform .. 22

5.3.1 Shared Project ... 23
5.3.2 Portable Class Libraries ... 23

Part II. Solution and Future Work... 25

6 .. Microsoft Azure ... 26

6.1 Introduction ... 26
6.2 SQL Server and Database .. 27
6.3 Web and Mobile Application Service .. 27
6.4 Job Automation ... 28

6.4.1 Automation Account ... 28

Contents

7

6.4.2 Runbook ... 29
6.4.3 Webhook .. 29
6.4.4 Job Scheduler.. 29

6.5 Active Directory .. 30

7 .. Database .. 31

7.1 Azure Connection ... 31
7.2 Structure .. 31
7.3 Stored Procedures .. 32

8 .. Website – Solution .. 33

8.1 Framework and Software ... 33
8.1.1 Bootstrap ... 33

8.2 Classes .. 33
8.2.1 Status Class ... 33
8.2.2 History Class ... 36
8.2.3 Map Class ... 36
8.2.4 Work Class ... 37
8.2.5 Marker Class .. 38

8.3 Architecture and Design .. 38
8.3.1 Login Page ... 39
8.3.2 Status Page .. 40
8.3.3 History Page .. 40

9 .. Mobile Application – Solution .. 41

9.1 Software and Code ... 41
9.1.1 Platform .. 41
9.1.2 UI and Code Sharing ... 42

9.2 Classes .. 42
9.2.1 Azure Table .. 42
9.2.2 STATION – Read Method .. 44
9.2.3 Location Class ... 45
9.2.4 Coordinate Conversion - Background .. 45
9.2.5 Coordinate Conversion - Implementation .. 46
9.2.6 HomePage .. 47

9.3 Architecture and Design .. 47
9.3.1 Login Page ... 48
9.3.2 Loading Page ... 49
9.3.3 Home Page ... 49
9.3.4 Preference Page .. 50
9.3.5 Search Page ... 50
9.3.6 Time Page .. 51
9.3.7 Work Page .. 52

9.4 Implementing Active Directory .. 52
9.4.1 Active Directory Authentication Library ... 53

9.5 Implementing Graphical Map ... 54
9.6 NuGet Packages .. 55

9.6.1 GeolocatorPlugin .. 55
9.6.2 TK.CustomMap .. 55

10 Testing ... 56

10.1 Test Methods .. 56
10.1.1 Unit Test ... 56
10.1.2 Integration Test ... 56
10.1.3 System Test ... 56
10.1.4 Acceptance Test .. 56

Contents

8

10.2 Function Test ... 56
10.2.1 Unit Test ... 56
10.2.2 Integration Test ... 57
10.2.3 System Test ... 59

11 Discussion ... 60

12 Future Work ... 62

12.1 Database ... 62
12.2 Web Application ... 62

12.2.1 Interactive Table and Map .. 62
12.2.2 Real-Time Table ... 62
12.2.3 Subsystem ... 62
12.2.4 History .. 62

12.3 Mobile Application ... 62
12.3.1 iOS .. 63
12.3.2 UI and UX ... 63
12.3.3 Location Class ... 63
12.3.4 Station Class ... 63

13 Summary .. 64

References ... 65

Appendices .. 70

9

Part I. Planning & Research
This part introduces the project and gives insight into the planning, design and research of the

project.

Introduction

10

1 Introduction
Today’s industry is strongly characterized by work efficiency and strict HSE regulations sur-

rounding the work area. An effort to meet these challenges has been the increasing implemen-

tation of technological solutions to improve the work environment for employees. In this de-

velopment, the smartphone has established itself as a primary platform for digital communica-

tion and information.

This project was initiated to replace the existing SMS system currently in use by Skagerak

Energi. This system is used to register the technicians’ work on substations. The technicians

send their call-in to a third-party company that displays it on screens at the operating centre.

Skagerak Energi requested an improved solution based on the use of modern technology. Such

as a mobile application and a website supported by cloud services. In addition to a system that

is easier to use and that take up less of the technicians’ time, Skagerak Energi also wanted to

present the information at the operating centre in an organised way.

The system was created to fulfil the following goals:

• To improve upon the present communication situation where technicians are required

to notify the operating central by SMS.

• To increase efficiency of communication, while maintaining HSE routines.

• To use modern development tools to create an operational communication system for

both technicians and operators.

• To create a routine tool for technicians to use when they are working in an electrical

substation.

1.1 Scope

The assigned task for this bachelor thesis, which is attached as Appendix A, describes Skagerak

Energi’s present communication system and their requirements for the new system developed

in this project.

Technicians can register a task and automatically notify both operating central and customer

support, as mentioned in the goals. Considering the number of project members and the

timeframe for this project, the focus has been to make a working product with at least basic

functionalities and then continue expanding during the development process. To help define

the scope, the following limitations were established:

• Develop a complete communication system for automatic data retrieval of registered

jobs, submitted by technicians, and presentation of this data in an informative and

graphical manner.

• The system should contain a website for displaying active registered jobs, a database

for storing data, a mobile application for registering jobs, and cloud service for hosting

applications.

• The mobile application should be able to support multiple platforms, but first be devel-

oped for Android.

• It should be a real-time system where information should be updated within a specified

timeframe.

Introduction

11

1.2 Project Workflow

Several development tools were used in this project. To develop the web and mobile applica-

tions, Visual Studio is used with respectively, ASP.NET and Xamarin Studio. MS SQL server

is used to create, modify and maintain the database. Azure Cloud is used to host both the web-

site and the database, as well as provide cloud services for mobile application.

The project’s goals, WBS and Gantt are all added as attachments for further reading:

• Appendix B Project goals

• Appendix C WBS

• Appendix D Gantt

Project management tools used in this project are:

• Blog page created by Hans-Petter Halvorsen is a project management system for devel-

opers.

• Visual Studio Team Services is used as a source control for code.

• Dropbox is used as a collective document storage.

1.3 Reading Guidelines

Chapter 2 gives a brief description of how the system will work and a short overview of the

planned solution.

Chapter 3 discusses planning and concept design for the website.

Chapter 4 discusses planning and concept design for the mobile application.

Chapter 5 is about the development tool for mobile application, what programming language

it uses and how it can provide cross-platform coding.

Chapter 6 is about Microsoft Azure and how their services applies to this project.

Chapter 7 presents the system’s database and how it communicates with Microsoft Azure.

Chapter 8 presents the current solution for the website and describes the development process.

Chapter 9 presents the current solution for the mobile application and describes the develop-

ment process.

Chapter 10 gives a brief description of how testing of the system was performed.

Chapter 11 discusses different aspects of the system.

Chapter 12 provides suggestions for future improvements.

Chapter 13 gives a summary of the project.

System Overview

12

2 System Overview
This chapter gives an insight into GridNote, the communication system developed in this pro-

ject, and how individual parts of the system are connected. GridNote is a system consisting of

an application for mobile devices, Azure Cloud Service and a website as mentioned in section

1.1. The main parts of the system are shown in Figure 2-1.

Figure 2-1 GridNote Overview

2.1 Planned Solution

Skagerak Energi has provided guidelines on how they expect the system should work. In addi-

tion to the given scope, other requirements were made to improve the outcome of the project

such as it should be scalable, maintainable and have backward compatibility for the mobile

application. A list of requirements for both applications is attached as Appendix E.

2.1.1 Web Application

A web application is developed to display jobs submitted by the technicians, in an informative

and graphical manner. The approach for this is to use a map to indicate which electrical sub-

stations are active. It will also focus on being responsive, adjusting the objects on the website

proportional to operator’s screen. Further details on planning and concept design of the web

application will be given in chapter 3.

2.1.2 Mobile Application

A mobile application is developed for technicians, where they can submit a task that will notify

the operating centre about which electrical substation they are working on. This system should

have a simple interface with limited options to ensure a straightforward interaction for the users

of mobile application. It should eventually support multiple OS platforms because users have

a combination of Android and iOS devices. Further details on planning and concept design of

the mobile application will be given in chapter 4.

Website – Planning and Design

13

3 Website – Planning and Design
This chapter describes the planning and design process for the web application. It contains the

diagrams created from the requirements together with User Experience (UX) and User Inter-

face (UI) specifications.

3.1 Requirements

The requirements for the web application were divided into non-functional and functional re-

quirements. The complete list of requirements will not be detailed in this section but is attached

as Appendix E.

3.1.1 Diagrams

This subsection covers the different diagrams that were developed during the planning phase

of the project. From the requirements found in Appendix E, a use case diagram was created.

The use case classify as Unified Modelling Language (UML) diagrams. UML diagrams serve

as a standard for data related modelling.

The use case diagram was created to display the relationship between user actions and the

response from background functions. Actions required from user are: Login and change display

information. The Use Case Diagram is shown in Figure 3-1.

Figure 3-1 Use case diagram for web application

Website – Planning and Design

14

3.2 User Experience

The UX is the underlying functionality that makes the behaviour of the application more fluent

for users. A list is derived from the requirements for the web application in Appendix E. The

following list elaborates on how the UX should be for different functionalities.

• Sign in:

The application should implement a sign in method, where the user only needs to pro-

vide email address and password. The user should stay logged in on the website, until

the user explicitly logs out.

• Table:

The table showing all the active workers should come with capabilities to sort for dif-

ferent categories. It should cover a large part of the screen so that it is more easily

read. It should also be possible to search for names or stations, displaying only rows

with those values. The status of the job should be indicated with an icon. One should

be able to scroll the table if the number of active jobs is larger than the fixed table

size.

• Map:

The map should be zoomable and its view adjustable. If the view of the map comes out

of bounds it can be brought back to the correct position. It should be able to open in full

screen for better view. The map should indicate clearly where the different active jobs

are taking place.

• Display information:

Historic data should be accessible. The logged in user’s name should be displayed. A

trendline should be displayed with the number of jobs that have been completed since

a given time.

3.3 User Interface

A UI was designed for the website during the design phase. A set of concept drawings were

made from an interpretation of the UML Diagram, and the requirements in Appendix E. The

concept drawings for the website contain three pages. These pages are the Login page, Status

page and History page. This section covers the different elements on these pages.

3.3.1 Login Page

The login page has only one important element and that is the login field. The user types in

email and password to login to the application. The concept drawing of the login page is shown

in Figure 3-2.

Website – Planning and Design

15

Figure 3-2 Concept drawing of login page

3.3.2 Status Page

After logging in with correct authentication and authorization the user is greeted to the status

page. The status page contains most of the elements of the website. Elements such as a trend-

line, map, table, buttons and labels. By clicking the preference button, a popup menu appears

that gives the user a selection of preferences to choose from. The trendline shows how many

active jobs there have been in the last seven days. The map displays indicators of each location

where a substation is being worked on. The table contains all the active jobs and useful infor-

mation about the job such as start time, worker info and status. The concept drawing of the

status page is shown in Figure 3-3.

Figure 3-3 Concept drawing of status page

Website – Planning and Design

16

3.3.3 History page

By clicking on the history button on the status page, the user is directed to the history page.

The elements on this page are identical to the status page except for the map with active jobs,

which is absent. The table contains the full history of completed work. The concept drawing

for the history page is shown in Figure 3-4.

Figure 3-4 Concept drawing of history page

Mobile Application – Planning and Design

17

4 Mobile Application – Planning and
Design

This chapter describes the planning and development processes for the mobile application. It

describes which choices were made and how they affect the mobile application.

4.1 Use Case Diagram

This section describes how the application was designed based on the requirements. This in-

cludes concept drawings. The requirements for this application can be found chapter 1.1 with

further details in Appendix E. From these requirements, a use case diagram was created to

display the relations of the user’s actions, and responses from the background functions of the

system. The use case, shown in Figure 4-1, serves as a basis document for creating User Inter-

face (UI) and User Experience (UX). To elicit a response from Azure Cloud Services, the user

must make one of the following actions: call-in, set work time, choose electrical substation,

Preferences and Login.

Figure 4-1 Use case diagram for mobile

4.2 User Experience

Focus on user experience has been important when developing the underlying functionalities

to make the application behave fluent. The following list is, in addition to the requirements,

functions the application should implement:

Mobile Application – Planning and Design

18

• Auto sign in:

The application should implement a sign in method, where the user only need to provide

email address and password. When the user has logged in once, it should not be neces-

sary to log in the next time the application is opened.

• Map update:

The map should focus on the user’s position when it is opened and automatically update

its substation information as the position changes.

• Check for work:

The user should not be able to register more than one job at any time. The application

should check for existing jobs in Azure and redirect the user to the status page. This is

also intended for the user to get the same job, when signing into the application with a

different device.

• Full text search:

A few electrical substations could be outside of cell tower range. The application should

include a search option for the user to find specific substations.

• Current time:

The application should automatically get the users current time when submitting a job.

The user should only have the possibility to select an end time.

• Display remaining work time:

The application should calculate and display the remaining work time.

• Notifications:

Notifications are used to inform the user when the registered end time is about to expire.

The user is then allowed to either extend the work time or select job completed.

4.3 Application Design

A set of concept drawings was made to illustrate the functionalities of the mobile application

based on the use case diagram in Figure 4-1. A recommendation from project partner was to

have a guided application interface, where the user has limited actions and must follow a certain

routine. The interface of the mobile application must, therefore, be simple and understandable.

The following figures show the intended UI design during the development process. All the

concept designs for this project is attached as Appendix F.

4.3.1 Login

The concept design of the login page is shown in Figure 4-2. This is what the application will

be developed from. In this page, the functionality is to validate the user against the server, and

also include the auto sign-in as mentioned in section 4.2.

Mobile Application – Planning and Design

19

Figure 4-2 Design of the login page

4.3.2 Select Station

After having logged in, the user should be able to select a substation, either by picking one

from the map or by searching for one with substation name or ID, as shown in Figure 4-3.

There should not be possible to select and register work on a station that is too far away from

the user.

The map should immediately display substations in near proximity to the user. This will require

the use of the mobile device’s GPS functionality to find the user’s position, and the appropriate

substations. The user should then be able to press the desired station on the map to select it.

When searching, all available substations matching the search word should appear in a

dropdown menu. Clicking a station from this menu should then make it the selected choice.

Figure 4-3 Design of the select station page

Mobile Application – Planning and Design

20

4.3.3 Select Time

The select time page handles the amount of worktime the user chooses. Figure 4-4 shows the

concept for that page. As seen, this page allows the user to decide the worktime with a time

wheel, a feature the project partner requested. It should calculate the time differences between

start and end time and present it in the next page. The remaining time function is mentioned in

section 4.2.

Figure 4-4 Design of the select time page

4.3.4 Status

The status page, shown in Figure 4-5, displays the user’s selected worktime as well as the status

of the job. It can also display other information such as substation Id and substation address.

This page will have buttons, one for completing the job and the one to edit the worktime.

If the user has completed the job on a substation, but forgets to register it as completed, the

application should give an alert asking if the job is finished or if it should be extended. This

should happen when the allotted time has expired or if the user has left the substation site.

Figure 4-5 Design of the status page

Xamarin

21

5 Xamarin
This chapter explains how Xamarin uses one programming language to create a mobile appli-

cation that can target multiple platforms, which usually require their own specific languages.

5.1 Native

A native application is per definition: an application that only targets one specific operating

system (OS). Which means applications must be built in their own programming language,

such as Swift for iOS and Java for Android. A setback is that their code cannot be shared

because of the language barrier. This causes developers to recreate identical applications, in

different languages.

The application should have the possibility of supporting multiple platforms. An approach to

this is to have a shared code base, where different native applications can use the same defined

functionality without them being recreated for each platform.

Xamarin is an open source extension tool for Visual Studio. It allows developers to build cross-

platform applications with its implementation of Common Language Infrastructure (CLI),

which is explained in section 5.2. Xamarin is a part of the Microsoft.NET Framework and uses

the programming language C#. This strong-type language covers almost all the functionalities

a common language needs for developing a mobile application. These are: Swift, Java and

Objective-C. [1][2]

Figure 5-1 Architecture of Xamarin [3]

The shared code base is showed at the bottom of Figure 5-1. Creating the logic once, with only

one language, is an advantage when developing cross-platform applications.

An alternative option is to develop the mobile application as a web application that run on the

device’s native browser. This way the user is not required to download any application. Sub-

sequently the user must then configure the browser’s permissions for using local hardware, and

the developer must build the application to support backward compatibility for browsers and

OS versions.

Xamarin

22

5.2 Common Language Infrastructure

This part is outside of the project’s scope; therefore, it is given as a general description on how

the CLI operates, and how it permits one language to run on multiple OS by converting to

machine language. [4][5].

CLI is a part of Microsoft.NET’s strategy for supporting cross-platform coding. This permits

the same programming language to run on different OS devices. CLI compiles the source code

to Common Intermediate Language (CIL), which is a bytecode language. CIL has been ac-

cepted as an open standard by European Computer Manufactures Association (ECMA), an in-

ternational organization for the promotion of technology standards. [4][5][6]

For the code to be understood by specific systems, CIL will further be compiled into Machine

code. It is also known as machine language and operates in series of binary code. This is illus-

trated in Figure 5-2. The binary code is then stored inside a metadata. “Metadata is stored with

the code; every loadable common language runtime portable executable (PE) file contains

metadata. The runtime uses metadata to locate and load classes, lay out instances in memory,

resolve method invocations, generate native code, enforce security, and set run-time context

boundaries.” [7]. [8]

Figure 5-2 Common language interface

5.3 Cross-Platform

Sharing code logic, as shown in Figure 5-1, permits developers to spend more time with one

programming language and comfortably scale their code to another platform.

Xamarin

23

Xamarin offers two code sharing architectures: Shared Project and Portable Class Libraries

(PCL) also known as .NET. Both architectures have the same principle for sharing code, but

their differences are how they handle the code behind. [9][10]

5.3.1 Shared Project

Figure 5-3 illustrates the Shared Project architecture. It permits developers to create platform

specific code and compile after the target device. Consequently, when using this as the project

architecture, it becomes more complex as the development process progresses and it becomes

harder to refactor, since most of the code are platform explicit. This architecture creates a copy

of the shared project code when compiling, and this would mean that each platform application

could include others platform code specification as seen in Figure 5-3. [10][11]

Figure 5-3 Shared code architecture [12]

5.3.2 Portable Class Libraries

The PCL lets developers create platform specific code, but only through each platform’s spe-

cific projects. Almost every code inside of the PCL project is shared to platform specific pro-

jects, this means maintaining or refactoring code is uncomplicated. Instead of creating a copy

of the shared code to each platform, PCL creates a reference as shown in Figure 5-4. This al-

lows the solution file for the application to have a centralized code sharing, where applying

refactoring operations on the code will affects all platform solution. [10][11]

Xamarin

24

Figure 5-4 Portable code architecture [11]

Xamarin

25

Part II. Solution and Future Work
This part explains the present solution of the GridNote system, as well as code examples of

functions. It also discusses the solution and how it can be improved with further develop-

ment.

Microsoft Azure

26

6 Microsoft Azure
The GridNote system uses Azure cloud services to accomplish different tasks. The resources

that complete these tasks are managed using the Azure Portal platform. Azure Portal is used to

build, deploy and administer the different applications and services. This chapter introduces

Microsoft Azure and explains the different Azure cloud services that the GridNote system used.

[13]

Some of the images used in this chapter were altered from Microsoft websites. These were

used with permission from Microsoft. [14]

6.1 Introduction

Azure provides a set of cloud services on one single platform. Azure has several services, some

of which are displayed in Figure 6-1. The figure only shows Platform Services and Security &

Management services, which are the only categories of services that are relevant to the current

GridNote system. The GridNote system primarily uses the services that are framed.

Figure 6-1 Part of Azure cloud services [15]

Another word for these services often used in Azure is resource. Different resources can be

grouped in what is fittingly called a resource group. The system’s resource group is called

GridNote. It contains all the Azure resources used to support both the website and the mobile

application. The main resources that will be explained in this section are the following:

• SQL Server and database

• Mobile application

• Web application

• Job scheduler

• Active Directory

Microsoft Azure

27

6.2 SQL Server and Database

The SQL Server and Database hosted on Azure is stored on Microsoft Azure’s servers. To

connect to the server, it is required to have an internet connection as the databases are stored

in the cloud. This means that any changes that are made without an internet connection will not

go through and update the database.

When creating the server, a Server Admin with password must be appointed. The admin is the

only user that can initially access the database in SQL Management Studio. Only the admin

may add new users unless a user with sufficient privileges has already been added, like a user

with the Login Manager role. The firewall on the SQL Server is configured in Azure Portal to

only allow specific IPs to access it with a TCP connection. This is to restrict any unwelcome

users from gaining access to the database. [16]

6.3 Web and Mobile Application Service

Two Web App Services were used to manage the mobile application and web application on

Azure. The names given for the web app service is called GridNote and the Mobile App Service

is called GridNoteApp.

Both app services have Authentication / Authorization configured to use the Azure Active Di-

rectory (AAD) from Skagerak Energi as authentication provider. The Azure Active Directory

(AAD) is explained in further detail in section 6.5 later in the report. The app service configu-

rations integrate the applications into the AAD. The configuration consists of a Client ID, Is-

suer Url and Client Secret as shown in Figure 6-2. These values were given by the project

partner and were generated by registering the applications on their AAD. Figure 6-2 shows

censored values as they can be used to obtain sensitive information. [17]

Figure 6-2 Authentication / Authorization settings

The Mobile application used Easy Tables as a means of communicating with the SQL Server

Database. A connection to the existing Database Server was added and the tables were added

individually to Easy Tables. This synced the SQL database with the Easy Tables database and

when the mobile application makes changes to the Easy Tables it is automatically updating the

Microsoft Azure

28

Azure SQL Server database. Other than adding the connection and tables there was no addi-

tional configuration needed on Azure portal. Figure 6-3 shows the current configuration of

Easy Tables.

Figure 6-3 Mobile App Service Easy tables

6.4 Job Automation

When the time for a work specified by a technician runs out, the status of the work stored in

the SQL Database needs to change its value. To make this repetitive task automated, several

resources in Azure were used. This chapter explains how these resources were used to make a

Stored procedure run in the SQL Database. Figure 6-4 shows the general concept of how this

job was automated.

Figure 6-4 Concept of automated task [18][19]

6.4.1 Automation Account

The GridNote system uses an Automation Account to store and configure the runbook with

the webhook that is used to complete the task. Runbooks and webhooks are explained in the

next chapter. The Automation Account used for the GridNote system is called GridNo-

teUpdateStatusAccount.

Microsoft Azure

29

6.4.2 Runbook

A runbook is the term used for an automated procedure that is run frequently. The runbook

called UpdateStatus was added to GridNoteUpdateStatusAccount and configured to run a Pow-

erShell Script. This PowerShell script that is shown in Figure 6-5 runs the StatusUpdater stored

procedure. Stored procedures are explained later in section 7.3. [20][21]

Figure 6-5 PowerShell script

6.4.3 Webhook

To trigger the runbook, a webhook called StatusUpdate shown was created. A webhook is

essentially a URL that triggers the runbook when someone sends a HTTP POST to it. The

webhook was then added to the UpdateStatus runbook.

6.4.4 Job Scheduler

To run the runbook according to a specific schedule or interval, one must create a Job Schedule.

But first one needs to create a Scheduler Job Collection which is a group of Job Schedulers. A

Job Schedule called getStations was created and configured to repeatedly run every minute.

To trigger the UpdateStatus runbook, the URL for the StatusUpdate webhook associated with

the UpdateStatus runbook was added to the action settings as shown in Figure 6-6.

 Figure 6-6 Settings for job scheduler

Microsoft Azure

30

6.5 Active Directory

Azure Active Directory (AAD) works like a regular Active Directory (AD) but is managed

through Azure Portal with an internet connection. Active Directory was made by Microsoft to

manage users, computers and devices connected in a network. The purpose is to gain greater

control over groupings by dividing them into groups or subgroups. These groups having vari-

ous access privileges within the network. [22][23][24]

An AD containing personnel working at Skagerak Energi was added to the AAD in the Grid-

Note resource group. For the values used in the authentication and authorization process de-

scribed in section 6.3, both the Web and Mobile Application had to be registered within the

AAD. To gain access to members of the AAD’s user info, permissions from the two registered

applications had to be configured. This configuration was done by the project partner.

Database

31

7 Database
This chapter describes the database structure of the system, the stored procedures that are used

and where the database is hosted.

7.1 Azure Connection

The database is hosted on Microsoft Azure Cloud Services. Using Azure will make it possible

to save data from the mobile application to the database via internet. The Azure helps to get a

secure database with a user and password login, as mentioned in section 6.2. To use database

hosting in Azure, an SQL server resource is needed. This is also where the login possibilities

are set. SQL server management studio is used to access the database created on the server.

Since the database and the mobile application cannot communicate directly with each other,

the Easy table API is used as an intermediary between the two.

7.2 Structure

In this section the structure of the database is described. Figure 7-1 shows an overview of the

database structure. The database consists of three tables; USER, WORK and STATION. The

first table is designed to save the necessary information about every user of the system. The

second table is made for storing every submitted work, and the third one is for saving infor-

mation about the substations. The second table has two foreign keys, which are the primary

keys from the first and the third table. Both have a one-to-many relationship with the second

table. When the database tables were inserted into Azure, Easy tables automatically generated

more columns. The columns generated are: id, createdAt, updatedAt, version and deleted.

These are default columns the mobile application’s Easy table use to synchronize with the da-

tabase. In Figure 7-1, the overview of the system’s database structure is shown without these

columns, except for the id columns which are used as primary keys for all three tables. These

keys are needed when a user is creating a work. [25]

Figure 7-1 Database tables

Database

32

7.3 Stored Procedures

“A Stored procedure is a group of one or more database statements stored in the database’s

data dictionary and called from either a remote program, another stored procedure, or the

command line.” [26]. The web application uses stored procedures to communicate with the

database. The stored procedures update or retrieve information from the database to the web-

site. Using stored procedures to communicate with the database, add a layer of security to the

client side of the application. It also contributes to prevent unwanted access to the database

tables by running stored procedures written by the developer, instead of giving the user full

authority to insert, update and delete tables directly. An example of one of the stored procedures

that is used in the web application is TableRefreshHistory, shown in Figure 7-2. This procedure

makes it possible for the web application to filter a search from a formatted table in the data-

base. As an example, if the user wants to search for a specific date, the stored procedure can

extract all information from the database columns from this date. [27]

Figure 7-2 The stored procedure TableRefreshHistory

Website – Solution

33

8 Website – Solution
This chapter contains a description of how the present version of the web application works

and the different choices made when developing the application. It also explains how certain

functions operated and how they were implemented. Appendix G explains some of the termi-

nologies used in this chapter. Appendix H contains the user manual for the website.

8.1 Framework and Software

The web application was developed in Microsoft Visual Studio (VS), a development tool for

creating applications. All code was tested using Google Chrome. The framework used to de-

velop the web application is ASP.NET Web Forms. In the VS environment, ASP.NET Web

Forms is one of four programming models that are used in development of web applications.

The others being MVC, Web Pages and Single Page Applications. Web Forms is a part of the

ASP.NET framework that is included in Visual Studio.

Web Forms allows users to use drag-and-drop controls with event-driven properties. The

webpage is first designed by adding controls such as textboxes, buttons, timers etc. Each of

these controls have their own properties that change its behaviour and appearance. Each control

also has events that can be used to trigger code. [28]

8.1.1 Bootstrap

Bootstrap is an open-source toolkit for HTML, CSS and JavaScript. Bootstrap is a front-end

toolkit that is used by developers to build UI components like buttons, menus and grids. Boot-

strap has a layout feature that allows for easy grouping of elements. This feature is the reason

that it was added to the GridNote website. Components chosen and referenced in the web ap-

plication are Bootstrap, Bootstrap Grid and Bootstrap Reboot. The version used in all Bootstrap

components is version 4. [29]

8.2 Classes

The objective of the website is to display a table of active workers that is only accessible to

staff in the operations central. As explained, Web Forms uses controls and events to trigger

code. Classes are used to store back-end code that is triggered by the control events. [30]

This section describes the classes used in the GridNote web application. There are five classes

called Status, History, Map, Work and Database. The Database class contains a global enu-

meration. Which is essentially a list of names of all the stored procedures in the database. The

Database class will not be explained further in this section.

8.2.1 Status Class

The Status class is the main class of the whole application and is the Code-Behind for the status

page. The Status class has seven methods called Page_Load, GetMarkers, GetImage,

timer1_Tick, TxtSearch_TextChanged, UTM2Deg and BtnMoreInfo_Click. This subsection de-

tails the Page_Load, GetMarkers and GetImage methods.

Website – Solution

34

The Page_Load method runs during loading of the status page. There are two functionalities

that are addressed in the page load. The first is adding markers to the map and the second is

getting the number of active work to display in a label. The first functionality of Page_Load,

which is creating markers, will be shown in this subsection. Figure 8-1 shows how a marker

on the map currently looks like on the website.

Figure 8-1 Map Marker

Creating markers to be shown on the map is done in three steps. The first step involves getting

the station information from the database and storing it in lists. The information consists of the

coordinates and information like address, id and region of the station. This is all retrieved from

the database hosted on Azure mentioned in section 6.2. To store the information, a list of

marker class objects called myMarkers, a map class object called mapPoints, a string from the

search textbox called searchText and several lists for station information are initialized. The

search text is sent into the method called GetPoints and the station information is sent back

out, filling the lists initialized earlier. The list of marker class objects called myMarkers is used

later in the third step. The GetPoints method is explained later in subsection 8.2.3. Figure 8-2

shows the first step of how the markers are created in the Page_Load method.

Figure 8-2 First step, initializing and populating variables

The second step involves validating the coordinates. A for-loop runs through both lists of co-

ordinates to check if they are real numbers. If they are not, a bool variable named isOk is set to

false. isOk is then used in the third step. Figure 8-3 shows the second step.

Website – Solution

35

Figure 8-3 Second step, validation of coordinates

The third step involves converting the coordinates and adding the information into one big list

before storing everything in a session state. Sessions are used to store and retrieve information

that is only used for the period the user is on the website. The coordinates are converted because

the map does not support their initial format. This conversion is detailed later in subsection

9.2.4. An if statement makes sure the validation from the second step was successful. The for-

loop converts the coordinates and creates marker objects with the coordinates and station in-

formation. These marker objects were then added to myMarkers mentioned in the first step.

Figure 8-4 shows the code for the third step. [31]

Figure 8-4 Third step, conversion and storing

The GetMarkers method is a static WebMethod that is called from the mark-up code (HTML)

using the JavaScript library jQuery together with Asynchronous JavaScript And XML (Ajax).

Ajax is used to get the data before the page loads by sending a POST request to the status page.

A list of marker objects called markerData is initialized for the session that was created in the

Page_load method described in subsection 8.2.1. This list of marker data is then returned to be

used in the JavaScript code. Figure 8-5 shows the code for the GetMarkers method.

Website – Solution

36

Figure 8-5 GetMarkers WebMethod

The GetImage method is called from the status page’s mark-up code on load-up using JavaS-

cript. It is used to display icons that indicate the status of the work. In the database, integers

were used to indicate the work status. 1 means the work is within the time limits, 2 means the

work has expired and 3 means the work has completed. The method receives the integer indi-

cation as a parameter. If the value is 1 it returns the “ok.png” image. If it is not 1 it returns the

“notok.png” image. The icon is displayed inside the table, which will be detailed in subsection

8.3.2.

8.2.2 History Class

The History class contains three methods, Page_load, Timer1_Tick and

TxtSearch_TextChanged. The Page_Load method uses the same code to get the number of

work as the page load event described in subsection 8.3.2. The Timer1_Tick and

TxtSearch_TextChanged methods are each triggered by different events (timer tick and text

change) but have identical content. The only purpose of these two methods is to update the

table.

8.2.3 Map Class

The Map class inherits from the interface IMap. An interface is used to control the content of

a class by making sure the class has all the members as the interface. Meaning all methods,

parameters and modifiers contained in the interface must be present in the class. There is only

one method used in the Map class and it is called GetPoints. [32]

The GetPoints method is used by the Status class as mentioned in subsection 8.2.1. This method

gets the coordinates and station information from the database. An SQL connection called con

is initialized for the connection string that is found in the Web.config file. A connection string

is a string that describes a data source and how to connect to it. Using the connection string,

the search text is added as a parameter in the stored procedure called getStationLocations. The

connection was opened, and a reader populates the initialized lists. This method uses a reader

object to read the table generated in SQL row by row. The GetPoints method is shown in Figure

8-6.

Website – Solution

37

Figure 8-6 GetPoints method

8.2.4 Work Class

The Work class inherits from an interface called IWork. The first method was called Get-

WorkQuantity and the second GetWorkQuantityHistory. Both methods were used to fill the

table with data, but the first was called from the Status page and the second was called from

the History page. The methods were used to call different stored procedures. These methods

use output parameters in stored procedures to get specific data. Figure 8-7 shows Get-

WorkQuantity method.

Figure 8-7 GetWorkQuantity method

Website – Solution

38

8.2.5 Marker Class

The marker class contains a method called Marker. This Marker method shown in Figure 8-8

is the same method that was mentioned in subsection 8.2.1. This class was used to create marker

objects. These marker objects contain the latitude, longitude, address, region, id and status of

a station. When a new marker object was created, it was added to the list of marker objects that

was declared in the first step.

Figure 8-8 Marker method

8.3 Architecture and Design

The website was based on the planning done for the UI and UX as well as the requirements

and UML diagrams. When visiting the website, the first page prompted a login using a Mi-

crosoft account. The only configuration needed for this authentication process was adding the

values explained in section 6.3 to Azure. Only operations central personnel with a Microsoft

account registered in the AAD could access the website beyond this login page.

During loading of the Status page, the table used a web method to replace integers with icons

that indicate the status of the work. Ajax was used to get the user’s first name and display it

in a label. The search box text was used to get work stored in the Azure database to fill the

table. The number of work were also received from the database and displayed in a label.

Right before the Status page finished loading, the page would check if the user had clicked

the more info button. If it was the case, the Google Maps API would be loaded. If there were

any active work, the markers would be loaded and added to the map using ajax. After loading

was finished, the table, map and number of work would refresh every five seconds or every

time the user changed text in the search textbox.

The user had the option of clicking to the history page. The history page would also send the

text in the search textbox to fill the table but would receive all completed work. The number

of work shown in the label would reflect this. Each pages’ design solution is shown in more

detail in this section. Figure 8-9 shows the workflow of the web application.

Website – Solution

39

Figure 8-9 Web application flow

8.3.1 Login Page

Users visiting the website would be presented with the Login page shown in Figure 8-10. The

user then typed in their email address and password for an account connected to Skagerak’s

Azure Active Directory. The page worked just as any other login page using Microsoft accounts

for login, like the mobile application.

Figure 8-10 Web application Login page

Website – Solution

40

8.3.2 Status Page

Figure 8-11 shows the status page for the web application. The table would only show rows

that contained the text in the search box. The number of work was displayed beside the “Ak-

tive:” label. Since the table only contains one work, only one marker is shown on the map. The

status of the work is also indicated, both by the colour of the marker and the icon under the

“Status” column.

Figure 8-11 Web application status page

8.3.3 History Page

If the user clicked on the “Historikk” button shown in Figure 8-11, the user was directed to the

history page. The history page shown in Figure 8-12 is identical to the status page when a map

is not displayed. The user has the same functionalities as the status page. Clicking the column

header sorted that column alphabetically, either ascending or descending. As Figure 8-12

shows, the number of completed work is 115.

Figure 8-12 Web application history page

Mobile Application – Solution

41

9 Mobile Application – Solution
This chapter will cover the present version of the mobile application, and which options were

selected when developing the application. It explains how certain functions operate and how

they were implemented. Appendix H contains the user manual for the mobile application.

9.1 Software and Code

The mobile application was developed in Microsoft Visual Studio (VS), an IDE for creating

software applications. In VS, an extension was required for development of a cross-platform

mobile application. This extension is called Xamarin. Background for Xamarin is covered in

chapter 5, describing how it’s able to build cross-platform application with only one program-

ming language.

9.1.1 Platform

When developing a new cross-platform application some ground structure must be set before

beginning. For example, choosing the UI, the architecture for code sharing and which platforms

to cover. The UI was set to Xamarin.Forms, the architecture for code sharing was set to .NET

standard, and the platform was set to cover both Android and iOS, as requested by the project

partner. This also has the possibility to include UWP.

The reasons for the choices are explained in the next subsection. Figure 9-1 shows the options

that were given during the creation of the application.

Figure 9-1 Creating a Xamarin project solution [33]

Mobile Application – Solution

42

9.1.2 UI and Code Sharing

Figure 9-1 shows two options for the UI, which are Xamarin.Forms and native. Differences

between them are how they shared the UI. For native option, each UI is developed inde-

pendently, this allows the developers to have more freedom in designing each platform with its

own custom looks. The other option is Xamarin.Forms, it creates a similar interface for all

platforms in the same project.

These two options have their own strengths and weaknesses. The native option has more con-

trol over how the UI can be designed for each platform. The other reduces the extent of recre-

ating similar code for the individual platform UIs. It compiles down and rebuilds the “same”

interface across the chosen platforms. The UIs cannot be the same since they have their own

code structures for how the interface will be presented. Based on the requirements, it is intended

to be simple for the technicians to use in their daily work routine.

On the code sharing strategy, shown in Figure 9-1, the options were Shared Project and .NET

standard. Both selections are covered in chapter 5, describing how their code sharing architec-

ture is. The .NET standard’s approach for a common code base was more straightforward than

Shared Project, where most of the code is platform specific. A decision was made to choose

the former approach. This allows the project to recycle a great portion of its code and use it on

other platforms.

9.2 Classes

A good practice for developers is to create classes with their own set of functionalities and then

reuse them. The code becomes easier to understand and maintain. The following subsection

will explain the classes that are associated with Easy table, the map and substation information,

as well as code examples of selected parts of the application.

9.2.1 Azure Table

For the application to communicate and exchange data with Easy table in Azure, it requires

classes with the same property names as in the SQL tables. Figure 9-2 presents the classes for

Easy table, where each have their own fields, properties and methods. These classes are pri-

marily used to send and receive values in the correct SQL table, which is connected to Easy

table. These tables are explained in section 6.3.

Mobile Application – Solution

43

Figure 9-2 Azure classes

There are three methods that are used to communicate with Easy table: ToListAsync, In-

sertAsync and UpdateAsync. The first method sends a request for data, specific to the USER

table, to Easy table, as seen in Figure 9-3 in frame. This method has a USER object as param-

eter and by calling the App.MobileService, located in the App class, targets the mobile appli-

cations website provided by Azure. This method checks if the user exists in Easy table after

being authenticated at the login page. It returns the user’s properties as a list. After receiving

the list, it does a check if it contains any data. If the list is NULL, the second method is used

to insert the same USER object into Easy table. How the authentication works is explained in

more detail in section 9.4. [34]

Figure 9-3 Get USER table method

Mobile Application – Solution

44

To change specific data in Easy table the third method is used, UpdateAsync. This permits the

application to change the data only related to the object parameter. A code snippet for this

method is framed and shown in Figure 9-4.

Figure 9-4 Update work table method

9.2.2 STATION – Read Method

This class contains properties for the different types of information stored about the substations

in the database. It also contains a Read method, which is the focus of this subsection, used to

load a list of substations onto the mobile device, as well as methods used when the user is

searching for substations.

The Read method is needed because all the substations are stored in an Azure cloud database.

A list of substations must be loaded onto the mobile device to be available when the user reg-

isters a job. The list is limited to a few thousand substations, so it must be updated if the user

moves too far away from where it was originally loaded. The update of the list is not imple-

mented at this point but will be covered as further improvements in subsection 12.3.4.

This is a static async task method. Static means that the method is not associated with an object

of the class, but rather the class itself. This is done because the method shall load/update to the

same static list each time it is called, even across classes. The async task part is added so that

the method will be awaited from where it is called in the code, and at the same time can run in

parallel with other code so that the application does not freeze while waiting for the method to

finish.

Figure 9-5 The main part of the Read method

Mobile Application – Solution

45

The method is called with three parameters: the user’s two coordinates and a distance in meters.

It is important to note that the coordinates used in this method are in the UTM 32N format, and

therefore the user’s coordinates must be converted from latitude and longitude into easting and

northing before the use of this method. This is also the reason why the distance is given in

meters, as these types of coordinate represents approximate meters to the east and to the north

of the set reference point given for UTM zone 32N. As Figure 9-5 shows, its function is to first

request a list of substations from the database, where the substations have an x-coordinate that

is within a certain range of the user’s x-coordinate. Then use the received list to do the same

for the y-coordinate. This range is given with the distance parameter as meters in both positive

and negative x- and y-coordinate direction compared to the user’s position. Consequently, the

substations loaded to the list are within a rectangular area of the user.

The Azure mobile service does not return all rows matching a query, but instead is limited to a

maximum of 1000 rows. Because of this the method also needs to check if the list contains

1000 items. In the case that it does, another request towards the database is made. This new

request will skip the first 1000 matching rows and return up to 1000 more. This check is done

twice, and the lists are concatenated making 3000 the maximum number of substations returned

by the method. This method has an issue and can be improved as described in subsection 12.3.4.

[35][36]

9.2.3 Location Class

The location class is used to handle information regarding the map, geographical positions, and

finding which stations should be displayed on the map. The class contains two methods:

GetDistance and StationsWithinDistance.

The first method, GetDistance, uses the Geolocator Plugin package, referred to in section 9.6.1,

to calculate the distance between two geographical locations. This is done with both locations

represented in latitude and longitude format, given as four parameters. The output represents a

distance in kilometres, as a straight line between these locations.

The second method, StationsWithinDistance, loops through the list of substations that is loaded

at start-up and finds the ones that are within a certain distance to the user. To do this, it uses

the GetDistance method which means that the substation’s coordinates must be converted from

UTM 32N to Web Mercator. As the method loops through the substation list, it will create a

list of map markers containing the appropriate substations. These are the markers that will be

displayed on the map.

9.2.4 Coordinate Conversion - Background

Skagerak Energi provided a list of electrical substations with information such as name, ad-

dress, types of station and location in the form of coordinates. This information was added to

an Azure database which serves as a connection between the website and the mobile applica-

tion.

To display the electrical substations on the map, the given coordinates must be in a specific

format. Google maps, which is used by the android version of the mobile application, needs

coordinates to be provided in latitude and longitude decimal degrees. The coordinates in the

database however, are in the form of eastings and northings. Therefore, a conversion is needed

Mobile Application – Solution

46

between WGS84 Web Mercator, which is what Google Maps uses, and ETRS89 with UTM

zone 32N, which is the format of the provided coordinates. [37][38]

The two geodetic datums WGS84 and ETRS89, which are ellipsoid representations of Earth,

are interchangeable as ETRS89 is derived from WGS84 and when converting between the

two, the resulting position differs less than one meter from the original. Therefore, no conver-

sion is needed between the datums. [39]

Web Mercator and UTM are both variants of the Mercator projection, which means that they

show curved geographical areas of Earth projected onto a flat surface. Even though both are

based on the same projection, there is a need for conversion between the two because of the

format. Conversion between these formats are done with two different classes.

Figure 9-6 UTM zones [40]

Figure 9-6 shows how Norway is divided into UTM zones and what area is covered by zone

32 used in this application’s code. These zones are necessary to minimize the distortion intro-

duced when projecting the Earth’s surface onto a flat plane. Each zone is a longitude band di-

vided into northern and southern hemispheres, hence the N in UTM 32N, but can also be di-

vided further into rectangles designated with other letters.

9.2.5 Coordinate Conversion - Implementation

The two classes UTM2Deg and Deg2UTM have been used to convert the coordinates back and

forth between the two formats. [41]

UTM2Deg is the class used when converting from the coordinates stored in the database to

what is needed when displaying the substations on the map. It is used when the markers on the

map are updated, which happens when the user’s location changes, and if the user find a sub-

station through the search function. Figure 9-7 shows an example of how these classes are used.

Mobile Application – Solution

47

Figure 9-7 UTM2Deg class is used in the StationWithinDistance method

In addition, there is a class called Deg2UTM converting in the opposite direction. It is needed

when a list of substations in the area of the user is extracted from the database; the user’s

coordinates are converted so they can be used to search for approximate matches in the data-

base. See the Read method.

9.2.6 HomePage

This is a partial class inheriting from the ContentPage class in Xamarin.Forms. It contains

methods for handling the user’s position and updating information on the map, and event han-

dlers for the various buttons on the page.

Two of the methods and one of the event handlers are based on the GeolocatorPlugin NuGet

package and its documentation. The first method, StartListeningForPosition, is called when

the Home Page is first opened. It is a task that runs asynchronously awaiting a Geoloca-

torPlugin method which takes arguments defining the update frequency of the user’s location.

The second method, GetUserLocation, awaits and returns the user’s coordinates when called.

The event handler, Locator_PositionChanged, calls for the UpdatePosition method described

below when the location changes. [42]

The UpdatePosition method is called when Home Page is opened and when the location

changes. It calls a method which puts together a list of map markers of the nearby electrical

substations and then adds them to the map.

9.3 Architecture and Design

The UI for the application is based on the requirement for simplicity and guided behaviour.

This is illustrated in Figure 9-8, which is an overview of the structure. When the application

first starts up it will display the login page. This page authenticates the user of the application.

After the user is verified, the loading page will obtain nearby stations from Easy table with the

user’s GPS location.

When it finishes acquiring the data from Easy table the home page will appear. This page dis-

plays a map with location indicators (pins), which marks substations nearby the user’s present

location.

When the user has selected a substation and pressed the time selection button, the application

would then navigate to the time page where the user can choose the amount of worktime by

rotating the clock.

A static work object is initialized when the application starts up. This object is created from

the WORK class. Figure 9-2 shows the structure of this class. The object obtains data when the

user has selected the worktime and pressed the confirm button. Before moving the user to the

work page, the data from the work object is sent to Easy table with the method described in

subsection 9.2.1.

Mobile Application – Solution

48

After successfully inserting the data to Easy table, the application will then navigate the user

to the work page and display general information about the current work and remaining work-

time. Each page’s functions are explained in more detail in the following subsections.

Figure 9-8 Mobile page flow

9.3.1 Login Page

Figure 9-9 shows the login page’s UI appearance of the application’s current solution. The UI

present the user with a single login button. When pressed the application performs a call for

authentication and opens the device’s default web browser. Details on how the authenticator

requests data is explained in the section 9.4. The web browser displays a Microsoft login page,

where the user inputs email address and password for an account connected to Skagerak’s AD.

Figure 9-9 Login page

Mobile Application – Solution

49

9.3.2 Loading Page

The loading page is shown while information regarding the substations are acquired from Easy

table using the user’s GPS location. Loading page invokes a method for loading stations which

is mentioned in subsection 9.2.2. It’s important to have search limit since the store data has

information of more than 7000 substation spread across the country. Narrowing it down will

potentially reduce the runtime for obtaining data. It also lessens the temporary store space in

the application.

This page also checks if the user exists in the database, and then obtains the unique ID. If the

user does not exist, a method is invoked which passes an object of the USER class. The struc-

ture of this class is shown in Figure 9-2. This object acquires its necessary data when the user

gets authenticated in the Login page. This method is shown in Figure 9-3, it checks if the re-

ceived data is NULL and inserts it if that is the case.

9.3.3 Home Page

Figure 9-10 shows the home page for the application. This is the page it returns to when the

user has completed a job. This page has four touchable actions: “Preferanse”, “Søk”, Map and

“Velg Arbeidstid”. These interactions, respectively: navigates the user to a “Preferanse” page

where it has a few settings for the user to change and this is further explained in the next sub-

section; navigates the user to a “Søk” page and allows the user to search for stations by typing

letters, this is given in more detail in subsection 9.3.5; the map lets the user visually see the

present position and nearby substations, the user can select a station by pressing the info box

of the selected pin; the “Velg Arbeidstid” button navigates the user to the next page of the

application which is the time page.

Figure 9-10 Home page

Mobile Application – Solution

50

9.3.4 Preference Page

Features in the Preference page are for future development and currently has no available set-

tings for the user to choose. Therefore, its only appropriate function is to have the sign out

button, “Logg av”. When it is pressed, the application signs out the user by deleting the cookies

and the page stacks, and then returns the user to the Login page. Figure 9-11 shows how the

page looks like in the working application.

Figure 9-11 Preference page

9.3.5 Search Page

The approach for including a search page for the application is for cases where the substation

is out of range of a network connection. This search feature lets the user input the station ID or

location. This function currently requires the substations to already be loaded onto the device.

Each entered character in the search box triggers a refresh method which updates the shown

list in Figure 9-12. This list provides suggestions of stations for the user to choose from and a

feature for showing the total number of search results. The user can scroll through the list to

view results of the search and by pressing one of the elements in the list, the application navi-

gates the user back to Home page with the information of the selected substation.

Mobile Application – Solution

51

Figure 9-12 Search page

9.3.6 Time Page

The Time page asks the user to select their expected work time, as seen in Figure 9-13. A wheel

displaying time selection appears when the user presses the time picker at the centre of the

screen. When the user has selected a work time from the time wheel, the application disables

the “Start Arbeid” button until the user has pressed the “Trykk her for å bekrefte valg av ar-

beidstid”, as an explicit function for the user to confirm the work time. This page also features

a value check for the selected time, which returns an alert message if the user’s selected time

is invalid. When an appropriate work time is confirmed, pressing the “Start Arbeid” button will

navigate the user to the Work page, at the same time as the data for this work is sent up to Easy

table with the method described in section 9.2.1.

Figure 9-13 Time page

Mobile Application – Solution

52

9.3.7 Work Page

The work page presents information of the current work in the grey area, shown in Figure 9-14.

The grey region displays the substation’s id, address, description, expected work time and re-

maining work time, in that order.

The remaining time invokes a function that counts down every second and displays the change.

This feature provides a better UX because the user can just read from the information and does

not need to calculate manually the remaining time each time they open the application.

This page only has two buttons for the user to select. “Arbeid Ferdig” ends the present work

by sending a data package to Easy table, informing that the work is completed and navigates

the user to Home page. “Endre” permits the user to change/extend the work time. It navigates

the user back to the Time page where they can select a new work time.

Figure 9-14 Work page

9.4 Implementing Active Directory

This section will explain the reason for implementing the Active Directory (AD) authentication

and how this was done. Code examples from the application are included for the purpose of

explaining how the data is sent and received.

Based on the requirements from the project partner the application must be secured and only

permitted to use by specific workers at Skagerak Energi. This feature intends to have the flex-

ibility of adding and removing people’s access to the application while utilizing their existing

AD.

Azure offers services, as mentioned in section 6.3, to connect the local AD with the Azure’s

AD. The application can, therefore, authenticate its users by asking the cloud AD and would

Mobile Application – Solution

53

acquire the same information as if it were local. The Azure AD can create groups with permis-

sion to use this application, however, configuration for creating and assigning groups are not

included in this report since it is outside of the project’s scope. Necessary values for imple-

menting the AD authentication service was provided by the project partner. This is shown in

Figure 9-15. The following subsection will go in detail on what data is required for the appli-

cation to obtain information from the cloud AD, using Active Directory Authentication Library

(ADAL).

Figure 9-15 Active directory connection

9.4.1 Active Directory Authentication Library

The ADAL enables the application to have authentication to the cloud AD and obtains tokens

for securing API calls. The library used in this application is downloaded from a NuGet man-

ager:

• Microsoft.IdentityModel.Clients.ActiveDirectory (3.19.2). [43]

The login button code shown in Figure 9-16, invokes an await method called Dependen-

cyService when pressed. This allows the application to call platform-specific functions from

the shared code, it finds the correct implementation of the interface from various platforms.

[44][45][46]

A new interface is created for the authentication method, which returns the result from ADAL

and contains an access token. “An access token is an object that describes the security context

of a process thread.” [47]

Figure 9-16 Retrieves access token

The access token is store as a static string value named token, this value will then get passed

into a method called clientInformation.AuthClient(token). The method is defined in ClientIn-

formation class, Figure 9-16 is a code snippet from the application, where the method handles

a request for obtaining the users information with Hypertext Transfer Protocol (HTTP).

Mobile Application – Solution

54

HTTPRequestMessage is defined as a new object where the constructor takes a Uniform Re-

source Identifier (URI) and the GET property is set. A new object of http header for authenti-

cation is added to the request object. The http header is defined with a constructor consisting

of a schema “Bearer” and the parameter AccessToken. Defining this schema means the server

should give access for the bearer of this token. [48][49]

The variable response stores the responding data from the client object, shown in Figure 9-17,

where HTTPRequestMessage object is sent as an input. The following if statement checks for

the status code of the response variable to be 200. If true, the status code is referred to as a

success and the response object contains the requested data. [50]

Data from the response is in a JavaScript Object Notation (JSON) format, a text format that is

language independent. To extract the response data a NuGet packed was used:

• Newtonsoft.Json (11.0.2) [51]

The class inherits from the USER class and can, therefore, have the same properties from the

base class. These properties are used for storing the values from the extracted response data.

After obtaining all the necessary values, they are return as one object of type tuple. This is a

data structure that has a specific number and sequence of elements. A benefit for using it, in

this case, is to return multiple values without using out or ref parameters. [52][53]

Figure 9-17 Retrieving information from active directory

9.5 Implementing Graphical Map

The mobile application uses map and location functionalities to display the user’s position and

the positions of electrical substations on a map. The map makers are shown only when the user

Mobile Application – Solution

55

zooms in. Information is updated when the position of the user changes. It currently updates

when the user moves about 20-30 meters.

Since the application uses “Google Maps for Android”, an API key connected to the package

name of the project had to be added to the “Android Manifest” of project. Permissions such as

“ACCESS_FINE_LOCATION” also had to be granted for the application to be able to access

the geolocation feature of the mobile device. This is also added to the Android Manifest. The

“Android Manifest” is shown in Figure 9-18.

Figure 9-18 Android Manifest

9.6 NuGet Packages

This section contains information about the NuGet packages used map and geolocation func-

tionalities.

9.6.1 GeolocatorPlugin

It is used to easily access the geographical location of the user and works on mobile platforms

such as Android API version 14+, iOS 8+ and Windows 10 UWP 10+. The package is needed

in the mobile application to find the users location, so that it will be possible to display electri-

cal substations near the user. The package is developed and maintained by James Montemagno

and is available under the MIT licence. [54]

Documentation with examples for the GeolocatorPlugin has been used when writing the code

for the geolocation part of the project. [42]

9.6.2 TK.CustomMap

The NuGet package used to display the map is TK.CustomMap developed by Torben Sudau

and is available under the MIT licence. This package is based on the Xamain.Forms.Maps

package by Xamarin Inc. It provides advanced cross-platform map functionalities, some of

which include customizing pins, adding overlays, calculate routes, search place predictions,

cluster pins. [55][56]

Testing

56

10 Testing
This chapter describes several different test methods and gives examples of some of the tests

performed. The results of tests for the mobile and web applications are attached as Appendix I

and J.

10.1 Test Methods

This section describes the four different software testing methods. These are: unit test, integra-

tion test, system test and acceptance test.

10.1.1 Unit Test

The unit test is a software testing method where individual units of the code is tested. A unit

can be viewed as the smallest part testable in the system such as a method, procedure or an

event. The goal of unit testing is to validate that each unit of the software performs as designed.

[57]

10.1.2 Integration Test

Integration testing is a software testing method where the individual software units are tested

as a combined unit. The goal is to test the interface between the units. This testing method is

performed after two or more units have been produced and unit tested separately. [58][59]

10.1.3 System Test

A system test is a software test method where the entire system is compared to a set of software

requirements. This means that the system’s design, user interface and overall behaviour is

tested from the user’s point of view. This type of testing is usually performed after the integra-

tion testing has been completed. [60][61]

10.1.4 Acceptance Test

For the system to be functional for the end-users, it must pass the acceptance test. The purpose

of this test is to evaluate the systems requirements and to see if the program is acceptable for

use. However, this test is not included in this project, because the product is under development.

The acceptance test must be executed together with Skagerak Energi. [62]

10.2 Function Test

This section describes one example for each of the test types used during the project. The sys-

tem was tested based on the requirements in Appendix E.

10.2.1 Unit Test

Case number 1 in Appendix I is used in the following example of a unit test. The method

UTM2Deg. This method transforms UTM coordinates to latitude and longitude. To test this

Testing

57

method, a unit test was created in VS as shown in Figure 10-1. The unit test involves comparing

a set of expected values against the resulting values from the tested method. In this example,

the coordinates of substation Klokkerveien 12 was selected as the testing values. The expected

values from this substation, were found by using a UTM to latitude and longitude converter on

the internet. These values were then compared against the result values produced by the tested

method, to check if they are equal. [39]

Figure 10-1 Unit test method

10.2.2 Integration Test

The integration test in this section is test case number 20 in Appendix I: Search in table. It is

used to test four parts of the system separately and as a group to check if they work together.

The first part is the stored procedure TableRefreshHistory shown in Figure 10-2 (TableRefresh

has also been tested, but in this subsection only TableRefreshHistory will be shown). The sec-

ond part of the test is the search textbox on the website. This textbox is used to filter searches

in the table. The third part of the test is to see if the right search will be shown in the table. The

last part is the connection to the database.

The first test was used to check if the TableRefreshHistory is working, by searching for a spe-

cific date. The selected date for this were 08/04 as shown in Figure 10-2.

Testing

58

Figure 10-2 The stored procedure TableRefreshHistory

The result for the stored procedure is shown in Figure 10-3. The same result was expected to

appear on the website.

Figure 10-3 Result from TableRefreshHistory

The next part tests if the textbox can filter the search from the SQL table according to the

provided search word and display the result on the website, as shown in Figure 10-4.

Figure 10-4 Result in the website

The results of this integrations test show that all the parts are working together. The filter search

can change the table with the result from the stored procedure. This also means that the con-

nection to the database works.

Testing

59

10.2.3 System Test

To get the system test approved, the system needs to pass the important requirements. This

means that the mobile application needs to fulfil the requirements such as login/logout, create,

edit and complete a job. The website needs to fulfil the requirements such as login/logout and

the possibility to view ongoing jobs.

Discussion

60

11 Discussion
This chapter discusses the project solution. It elaborates on each segment of the GridNote sys-

tem and compares them to alternatives.

It was desired that the GridNote system should be a fully functional system at an early stage.

Regarding the requirements in Appendix E, it was not feasible to fulfil all of these within the

given timeframe. It was decided to first include the basic functionalities as soon as possible,

and then improve on these as the project progressed. This approach ensured that the system

always was in a deployable state. The overall system needs more testing to ensure the functions

can perform as intended in a work environment and for a multitude of concurrent users.

The system’s infrastructure was designed to be a cloud-based solution hosted on an Azure

server. This has several benefits, such as a centralized data storage system which provides

consistent and synchronized data to all devices. However, a discussion can be made regarding

cloud-based services versus hosted or local services.

For cloud services and hosted services, software is stored on a remote server and accessed

through an internet connection. One could argue that hosted services are not truly web-enabled

as they might need infrastructure put in place on-site beforehand. Since the hosted service is

owned by the business, the business is also responsible for maintaining the service. Contrary

to cloud services that do not require any maintenance. Cloud services is the only option wholly

accessible through the internet. [63][64][65]

Downsizing or upsizing any IT equipment on a local or self-hosted service requires additional

capital costs. This cost exceeds the cost of upsizing a cloud service, as most offer the pay-as-

you-go payment method. This method charges only based on the amount of usage, so one only

pays for what is needed. Another argument for cloud services is the time it often takes to upsize

or downsize a local service. This transition period often comes with some downtime and can

be costly. [66]

The database was only developed to the extent that it would not affect system integrity. This

was because the performance of the system would not be affected, as the numbers of users and

thereby the processing power needed, would not exceed a certain limit. However, redundancy

issues are present and the opportunity to optimize for this is clear. This optimization is detailed

in the next chapter.

One request made from the personnel working at the operating centre was to increase the size

of the table on their website. The table in the solution was therefore made to cover a large part

of the webpage. The options for framework used for the website were between ASP.NET Web

Forms and ASP.NET MVC. Web Forms was chosen because of previous experience with the

framework, using it for projects developed prior to this thesis.

The mobile application was developed with opportunity to support multiple OS platforms. As

explained in chapter 5, Xamarin was chosen because of the ability to share code between An-

droid and iOS platform applications. Xamarin claims that, on average, 75% of the code that is

created can be shared. [67]

A different development tool for the app could be Apache Cordova which uses the device’s

browser. This tool also allows for shared code and can utilize the same modules, but is written

Discussion

61

in CSS, HTML and JavaScript. It would require knowledge in these languages that Xamarin

does not use.

The mobile application’s user interface should have been structured with the Model-View-

ViewModel. This allows the code to become more testable, it uses data bindings, events and

notifies property changes in the UI. This option was however not feasible due to the project’s

time constraint. [68]

Future Work

62

12 Future Work
This chapter contains recommendations for future improvements to the GridNote system.

12.1 Database

The database structure, shown in Figure 7-1, is currently at 1NF and should be normalized to

2NF and eventually 3NF (or BCNF). An approach for this is to create new tables for repeating

values such as StationType, StationName, StationProvince and TrafoType, where all values in

these tables are uniquely identified by the table’s primary keys. The planning for this normali-

zation process has been started, but not yet implemented. An improved, but not complete, table

structure can be seen in Appendix K. [69]

12.2 Web Application

This section describes future improvements of the web application such as tables, backup sys-

tem and functions.

12.2.1 Interactive Table and Map

The data tables and map on the web application can be improved to be more interactive by

including functions such as redirecting the map and displaying information from selected ele-

ments in table or map.

12.2.2 Real-Time Table

By implementing SignalR to the web application, the table and the other modules can be up-

dated in real-time. SignalR involves making an open two-way connection between the database

and the application so that information can flow freely and instantly. [70]

12.2.3 Subsystem

The web application should have a subsystem for operators to create, extend or complete tasks

for technicians.

12.2.4 History

The history page in the web application should include features for operators to download his-

toric data from the database in pdf, Excel and printing format. Operators should also have the

opportunity to selected filtered data.

12.3 Mobile Application

This part describes future improvements to sections such as functionality, graphical represen-

tation, application behaviour, and also extending support to additional OS.

Future Work

63

12.3.1 iOS

Adding support for iOS requires testing and development in a MacOS environment. This has

not been done yet, but most of the functionalities in the current solution are shared between

Android and iOS.

12.3.2 UI and UX

An adaptable UI can be implemented by auto adjusting objects to fit all device screens, includ-

ing tablets, and for the text size to scale accordingly to objects’ proportions. The language of

the application should be adapted for the intended users, to avoid misinterpretations.

For the UX, a change would be to create a method allowing already signed in users to navigate

automatically to the Home page, without the need of pressing the login button each time the

application opens. This would eliminate a few unnecessary actions required from the user and

offer a better experience.

Implement a more interactive time wheel instead of the current one shown in Figure 9-13. The

time should continuously be displayed while the user adjusts it, using the wheel.

12.3.3 Location Class

The Locationclass has a method which is used to find substations within a radius of the user,

and a method which shows a set number of the closest substations. Future improvements to the

application may include making use of a combination of these two methods, so that the appli-

cation always shows at least a few of the closest substations regardless of being within a spe-

cific range or not. This could be helpful in locations where there are few or no substations

nearby. In the opposite situation, when there are many substations nearby, there might be con-

venient to have a maximum limit on the number of substations, showing only the closest.

12.3.4 Station Class

Loading substations from a large area, seems to cause an issue when displaying them on the

map. This might have to do with loading duplicates from Azure, or the problem might be with

trying to show too many map markers at once. This issue may be fixed by reducing the search

area or showing map markers that are closer to the user. Both of these actions have been taken

in the current version and the correct number of stations seems to be displayed. However, fur-

ther testing is needed to know exactly what caused this issue. When further developing the

application, this issue may be solved by changing the method altogether.

A better solution for the Read method might be to, instead of loading stations from Azure, have

a local database on the mobile device containing a complete list of all the stations. It should

then be possible to update this list by syncing with the Azure Cloud database. Changes in the

list is assumed to happen rarely because electrical substations are not added or removed too

frequently. Therefore, syncing the database may be done once a week or even rarer.

Another solution that is closer to the current one, might be to significantly reduce the area that

the stations are loaded from during start-up. Then add a function which updates the resulting

list when the user moves a certain distance away from the position where the original list was

loaded.

Summary

64

13 Summary
The aim of the project was to develop a software solution for Skagerak Energi as well as doc-

umentation in the form of this thesis. The new solution is meant to be a replacement of an

existing system that is used by technicians out in the field. This system is used to notify the

operating centre about which electrical substations they are working on. It is there to ensure

the safety of the workers by giving the operating centre an overview of the ongoing jobs.

The system that is currently in use employs a SMS solution to register the technicians’ work.

The information is handled by a third-party company before it is displayed on screens in the

operating centre. Skagerak Energi requested an improved solution based on the use of modern

technology. In addition to a solution that is easier to use and takes up less of the technicians’

time, Skagerak Energi also wanted to present the information at the operating centre in an

organised way.

In the starting phase of this project the system was determined to consist of a database, a mobile

application and a web application. The foundation for the solution was laid by creating dia-

grams and design documentation. Simultaneously, relevant research to start implementing the

system was conducted.

In the development phase, the focus was to make an intuitive and user-friendly interface that

has the basic functionalities in place across the system. This way the system would always be

in a useable state. Microsoft Azure was used to host the database and web services, and Xama-

rin to develop the cross platform mobile application.

Azure Cloud Services is used to centralize the database so that it is available for both the web-

site and the mobile application. It is also connected to Skagerak’s Active Directory, allowing

them to create groups with permissions to access different applications.

The website was developed using ASP.NET Web Forms, a web development tool in Visual

Studio. The website allows the operators to view registered jobs, using features such as a map

to interpret the data content and portray them with clarity. It also includes a search function to

filter active jobs according to a particular word. This can be helpful for the operators to see the

visualize data without delay.

The mobile application is limited to Android, but it was developed using the Xamarin extension

in Visual Studio to make it easier to eventually achieve cross-platform support. Development

of the mobile application features AD verification of the user when logging in. This gives high

security and permits Skagerak to have more control over the access to the app. The user has

more information available, presented in a simple manner as a map with markers. The app

grants the user a faster and simpler procedure for registering jobs, where the user only needs to

select a station and a timeframe.

The whole system is functional; however, it has some issues that can be improved with further

development.

 References

65

References
[1] Shubham Jain, Overview of Common Language Infrastructure, 2017. Retrieved from:

https://www.c-sharpcorner.com/blogs/overview-of-common-language-infrastructure ,

Downloaded: 09.05.2018.

[2] Xamarin, Xamarin, 2018. Retrieved from: https://www.xamarin.com/platform , Down-

loaded: 09.05.2018.

[3] Armut Kale, Xamarin, 2016. Retrieved from: http://varahitechnologies.com/xamarin/ ,

Downloaded: 09.05.2018.

[4] J.S.Miller, S.Ragsdal, The Common Language Infrastructure Annotated Standard, U.S:

Pearson Education, 2004. [Online]. Retrieved from:

https://books.google.no/books?hl=no&lr=&id=50PhgS8vjhwC&oi=fnd&pg=PR21&dq=

common+language+infrastructure&ots=v-

Gy_iraqU&sig=9zt_2qmTrP8uHIo5oFKtR6M_Jz4&redir_esc=y#v=onepage&q=com-

mon%20language%20infrastructure&f=false , Downloaded: 09.05.2018.

[5] Common Language Infrastructure (CLI) Partitions I to VI, ECMA-335, 2012. [Online]:

https://www.ecma-international.org/publications/standards/Ecma-335.htm

[6] Ecma, History of Ecma, 2017. Retrieved from: https://www.ecma-international.org/me-

mento/history.htm , Downloaded: 09.05.2018.

[7] R.Petrusha et al, Common Language Runtime (CLR) overview, 2018. Retrieved from:

https://docs.microsoft.com/en-us/dotnet/standard/clr , Downloaded: 09.05.2018.

[8] S.Gibilisco and M.Doig, Machine Code, 2018. Retrieved from: https://whatis.tech-

target.com/definition/machine-code-machine-language , Downloaded: 09.05.2018.

[9] P.Pedro, Xamarin – PCL vs. Shared Project, 2017. Retrieved from: https://me-

dium.com/@daRochaPires/xamarin-pcl-vs-shared-project-a838806d5cc6 , Downloaded:

09.05.2018.

[10] J.Pepper, G.Taskos and C.Brilgin, Xamarin: Cross-Platform Mobile Application Devel-

opment, UK: Packt Publishing, 2016. [Online]. Retrieved from:

https://books.google.no/books?hl=no&lr=&id=SqfWDQAAQBAJ&oi=fnd&pg=PP1&dq

=Xamarin+Portable+Class+library&ots=PqpD-8fjRL&sig=wG-

EuEeQOKf0rZ6dReKz9XIIIKE&redir_esc=y#v=onepage&q=Xamarin%20Porta-

ble%20Class%20library&f=false , Downloaded: 09.05.2018.

[11] A.Bruns, B.Umbaugh and C.Dunn, Introduction to Portable Class Libraries, 2017. Re-

trieved from: https://docs.microsoft.com/nb-no/xamarin/cross-platform/app-fundamen-

tals/pcl?tabs=vsmac , Downloaded: 09.05.2018.

[12] A.Bruns, B.Umbaugh and C.Dunn, Shared Projects, 2017. Retrieved from:

https://docs.microsoft.com/nb-no/xamarin/cross-platform/app-fundamentals/shared-pro-

jects?tabs=vsmac , Downloaded: 09.05.2018.

[13] Cloud Direct, An introduction to the Microsoft Azure portal, 2018. Retrieved from:

https://www.clouddirect.net/knowledge-base/a/KB0011450/an-introduction-to-the-mi-

crosoft-azure-portal, Downloaded: 08.05.2018.

[14] Microsoft, Use of Microsoft Copyrighted Content, 2018. Retrieved from:

https://www.microsoft.com/en-us/legal/intellectualproperty/permissions, Downloaded:

08.05.2018.

https://www.c-sharpcorner.com/blogs/overview-of-common-language-infrastructure
https://www.xamarin.com/platform
http://varahitechnologies.com/xamarin/
https://books.google.no/books?hl=no&lr=&id=50PhgS8vjhwC&oi=fnd&pg=PR21&dq=common+language+infrastructure&ots=v-Gy_iraqU&sig=9zt_2qmTrP8uHIo5oFKtR6M_Jz4&redir_esc=y#v=onepage&q=common%20language%20infrastructure&f=false
https://books.google.no/books?hl=no&lr=&id=50PhgS8vjhwC&oi=fnd&pg=PR21&dq=common+language+infrastructure&ots=v-Gy_iraqU&sig=9zt_2qmTrP8uHIo5oFKtR6M_Jz4&redir_esc=y#v=onepage&q=common%20language%20infrastructure&f=false
https://books.google.no/books?hl=no&lr=&id=50PhgS8vjhwC&oi=fnd&pg=PR21&dq=common+language+infrastructure&ots=v-Gy_iraqU&sig=9zt_2qmTrP8uHIo5oFKtR6M_Jz4&redir_esc=y#v=onepage&q=common%20language%20infrastructure&f=false
https://books.google.no/books?hl=no&lr=&id=50PhgS8vjhwC&oi=fnd&pg=PR21&dq=common+language+infrastructure&ots=v-Gy_iraqU&sig=9zt_2qmTrP8uHIo5oFKtR6M_Jz4&redir_esc=y#v=onepage&q=common%20language%20infrastructure&f=false
https://www.ecma-international.org/publications/standards/Ecma-335.htm
https://www.ecma-international.org/memento/history.htm
https://www.ecma-international.org/memento/history.htm
https://docs.microsoft.com/en-us/dotnet/standard/clr
https://whatis.techtarget.com/definition/machine-code-machine-language
https://whatis.techtarget.com/definition/machine-code-machine-language
https://medium.com/@daRochaPires/xamarin-pcl-vs-shared-project-a838806d5cc6
https://medium.com/@daRochaPires/xamarin-pcl-vs-shared-project-a838806d5cc6
https://books.google.no/books?hl=no&lr=&id=SqfWDQAAQBAJ&oi=fnd&pg=PP1&dq=Xamarin+Portable+Class+library&ots=PqpD-8fjRL&sig=wG-EuEeQOKf0rZ6dReKz9XIIIKE&redir_esc=y#v=onepage&q=Xamarin%20Portable%20Class%20library&f=false
https://books.google.no/books?hl=no&lr=&id=SqfWDQAAQBAJ&oi=fnd&pg=PP1&dq=Xamarin+Portable+Class+library&ots=PqpD-8fjRL&sig=wG-EuEeQOKf0rZ6dReKz9XIIIKE&redir_esc=y#v=onepage&q=Xamarin%20Portable%20Class%20library&f=false
https://books.google.no/books?hl=no&lr=&id=SqfWDQAAQBAJ&oi=fnd&pg=PP1&dq=Xamarin+Portable+Class+library&ots=PqpD-8fjRL&sig=wG-EuEeQOKf0rZ6dReKz9XIIIKE&redir_esc=y#v=onepage&q=Xamarin%20Portable%20Class%20library&f=false
https://books.google.no/books?hl=no&lr=&id=SqfWDQAAQBAJ&oi=fnd&pg=PP1&dq=Xamarin+Portable+Class+library&ots=PqpD-8fjRL&sig=wG-EuEeQOKf0rZ6dReKz9XIIIKE&redir_esc=y#v=onepage&q=Xamarin%20Portable%20Class%20library&f=false
https://docs.microsoft.com/nb-no/xamarin/cross-platform/app-fundamentals/pcl?tabs=vsmac
https://docs.microsoft.com/nb-no/xamarin/cross-platform/app-fundamentals/pcl?tabs=vsmac
https://docs.microsoft.com/nb-no/xamarin/cross-platform/app-fundamentals/shared-projects?tabs=vsmac
https://docs.microsoft.com/nb-no/xamarin/cross-platform/app-fundamentals/shared-projects?tabs=vsmac
https://www.clouddirect.net/knowledge-base/a/KB0011450/an-introduction-to-the-microsoft-azure-portal
https://www.clouddirect.net/knowledge-base/a/KB0011450/an-introduction-to-the-microsoft-azure-portal
https://www.microsoft.com/en-us/legal/intellectualproperty/permissions

 References

66

[15] T. Ng, What should I do to start a career in Cloud computing especially Azure?, 2017.

Retrieved from: https://www.quora.com/What-should-I-do-to-start-a-career-in-Cloud-

computing-especially-Azure, Downloaded: 08.05.2018

[16] Carl Rabeler et al, Controlling and granting database access, 2018. Retrieved from:

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-manage-logins, Down-

loaded: 06.05.2018.

[17] M. Henderson et al, Configure your App Service app to use Azure Active Directory login,

2018. Retrieved from: https://docs.microsoft.com/en-us/azure/app-service/app-service-

mobile-how-to-configure-active-directory-authentication, Downloaded: 08.05.2018.

[18] G. Wallace et al., Starting an Azure Automation runbook with a webhook, 2018. Re-

trieved from: https://docs.microsoft.com/en-us/azure/automation/automation-webhooks,

Downloaded: 08.05.2018.

[19] Microsoft, Scheduler Documentation, 2018. Retrieved from: https://docs.mi-

crosoft.com/en-us/azure/scheduler/, Downloaded: 08.05.2018.

[20] V. Beal, run book, 2018. Retrieved from: https://www.webope-

dia.com/TERM/R/run_book.html, Downloaded: 08.05.2018.

[21] G. Wallace et al., Azure Automation runbook types, 2018. Retrieved from:

https://docs.microsoft.com/en-us/azure/automation/automation-runbook-types, Down-

loaded: 08.05.2018.

[22] C. Ng, Active Directory: difference Between Windows and Azure AD, 2018. Retrieved

from: https://blog.varonis.com/windows-vs-azure-active-directory/, Downloaded:

08.05.2018.

[23] Techterms, Active Directory, 2017. Retrieved from: https://techterms.com/definition/ac-

tive_directory, Downloaded: 08.05.2018.

[24] E. Ross et al., What is Azure Active Directory?, 2018. Retrieved from: https://docs.mi-

crosoft.com/en-us/azure/active-directory/active-directory-whatis, Downloaded:

08.05.2018.

[25] Adrian Hall, Why is there a string ID in the data model of Azure Mobile Apps?, 2016.

Retrieved from: https://stackoverflow.com/questions/38231279/why-is-there-a-string-id-

in-the-data-model-of-azure-mobile-apps, Downloaded: 09.05.2018.

[26] K. Wenzel, Learn about Stored Procedures, 2018. Retrieved from: https://www.essen-

tialsql.com/what-is-a-stored-procedure/ , Downloaded: 10.05.2018.

[27] Tricalyx LLC, Why use Stored Procedures?, 2012. Retrieved from: http://mysql-

storedprocedure.com/index.php?option=com_content&view=article&id=51&Itemid=40 ,

Downloaded: 10.05.2018.

[28] R. Anderson, A. Pasic and T. Dykstra, What is Web Forms, 2014. Retrieved from:

https://docs.microsoft.com/en-us/aspnet/web-forms/what-is-web-forms, Downloaded:

09.05.2018.

[29] Ahmed, T. (2013, 31. Jul.). What is Bootstrap [Video file]. Retrieved from:

https://www.youtube.com/watch?v=V7x_hosDoIo

[30] B. Wagner et al., Classes (C# Programming Guide), 2018. Retrieved from:

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-

structs/classes, Downloaded: 07.05.2018.

https://www.quora.com/What-should-I-do-to-start-a-career-in-Cloud-computing-especially-Azure
https://www.quora.com/What-should-I-do-to-start-a-career-in-Cloud-computing-especially-Azure
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-manage-logins
https://docs.microsoft.com/en-us/azure/app-service/app-service-mobile-how-to-configure-active-directory-authentication
https://docs.microsoft.com/en-us/azure/app-service/app-service-mobile-how-to-configure-active-directory-authentication
https://docs.microsoft.com/en-us/azure/automation/automation-webhooks
https://docs.microsoft.com/en-us/azure/scheduler/
https://docs.microsoft.com/en-us/azure/scheduler/
https://www.webopedia.com/TERM/R/run_book.html
https://www.webopedia.com/TERM/R/run_book.html
https://docs.microsoft.com/en-us/azure/automation/automation-runbook-types
https://blog.varonis.com/windows-vs-azure-active-directory/
https://techterms.com/definition/active_directory
https://techterms.com/definition/active_directory
https://docs.microsoft.com/en-us/azure/active-directory/active-directory-whatis
https://docs.microsoft.com/en-us/azure/active-directory/active-directory-whatis
https://stackoverflow.com/questions/38231279/why-is-there-a-string-id-in-the-data-model-of-azure-mobile-apps
https://stackoverflow.com/questions/38231279/why-is-there-a-string-id-in-the-data-model-of-azure-mobile-apps
https://www.essentialsql.com/what-is-a-stored-procedure/
https://www.essentialsql.com/what-is-a-stored-procedure/
http://mysqlstoredprocedure.com/index.php?option=com_content&view=article&id=51&Itemid=40
http://mysqlstoredprocedure.com/index.php?option=com_content&view=article&id=51&Itemid=40
https://docs.microsoft.com/en-us/aspnet/web-forms/what-is-web-forms
https://www.youtube.com/watch?v=V7x_hosDoIo
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/classes
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/classes

 References

67

[31] Microsoft, ASP.NET Session State Overview, 2018. Retrieved from: https://msdn.mi-

crosoft.com/en-us/library/ms178581.aspx, Downloaded: 08.05.2018.

[32] B.Wagner et al, interface (C# Reference), 2015. Retrieved from: https://docs.mi-

crosoft.com/en-us/dotnet/csharp/language-reference/keywords/interface , Downloaded:

09.05.2018.

[33] E. Rosas, Xamarin Forms – Selecting an Image form the Gallery, 2018. Retrieved from:

https://lalorosas.com/blog/xamarin-forms-selecting-image-from-the-gallery , Down-

loaded: 09.05.2018.

[34] D.Britch and C.Dunn , Consuming an Azure Mobile App, 2016. Retrieved from:

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/data-cloud/consuming/azure ,

Downloaded: 09.05.2018.

[35] T. Myers and R. Shahan, Query Entities, 2016. Retrieved from: https://docs.mi-

crosoft.com/en-us/rest/api/storageservices/Query-Entities?redirectedfrom=MSDN ,

Downloaded: 06.05.18

[36] Microsoft, MobileServiceTable.skip function, 2013. Retrieved from: https://msdn.mi-

crosoft.com/en-us/library/azure/jj613355.aspx . Downloaded: 06.05.18.

[37] Spatial Reference, EPSG:25832, 2017. Retrieved from: http://spatialrefer-

ence.org/ref/epsg/25832/ , Downloaded: 07.05.18.

[38] Spatial Reference, SR-ORG:7483, 2017. Retrieved from: http://spatialrefer-

ence.org/ref/sr-org/epsg3857-wgs84-web-mercator-auxiliary-sphere/. Downloaded:

07.05.18.

[39] Engineering ToolBox, UTM to Latitude and Longitude Converter, 2008. Retrieved

from: https://www.engineeringtoolbox.com/utm-latitude-longitude-d_1370.html , Down-

loaded: 06.05.18

[40] T. Tonning, UTM to Latitude and Longitude Converter, 2004. Retrieved from:

http://www.mesterkart.no/Ordliste.htm#UTM-sone , Downloaded: 06.05.18

[41] user2548538, Java, Convert lat/lon to UTM, 2015. Retrieved from: https://stackover-

flow.com/questions/176137/java-convert-lat-lon-to-utm , Downloaded: 27.03.18

[42] J. Montemagno, GeolocatorPlugin, 2017. Retrieved from: https://jamesmon-

temagno.github.io/GeolocatorPlugin/ , Downloaded: 07.03.18

[43] Microsoft, Microsoft.IdentityModel.Clients.ActiveDirectory, 2018. Retrieved from:

https://www.nuget.org/packages/Microsoft.IdentityModel.Clients.ActiveDirectory/ ,

Downloaded: 09.05.2018.

[44] D.Britch et al, Introduction to DependencyService, 2017. Retrieved from:

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/app-fundamentals/dependency-

service/introduction , Downloaded: 09.05.2018.

[45] M. Tendulkar, Put Some Azure Active Directory in Xamarin.Forms, 2015. Retrieved

from: https://blog.xamarin.com/put-adal-xamarin-forms/ , Downloaded: 09.05.2018.

[46] S.Akhter et al, Azure Active Directory Authentication Libraries, 2018. Retrieved from:

https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-authen-

tication-libraries , Downloaded: 09.05.2018.

https://msdn.microsoft.com/en-us/library/ms178581.aspx
https://msdn.microsoft.com/en-us/library/ms178581.aspx
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/interface
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/interface
https://lalorosas.com/blog/xamarin-forms-selecting-image-from-the-gallery
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/data-cloud/consuming/azure
https://docs.microsoft.com/en-us/rest/api/storageservices/Query-Entities?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/rest/api/storageservices/Query-Entities?redirectedfrom=MSDN
https://msdn.microsoft.com/en-us/library/azure/jj613355.aspx
https://msdn.microsoft.com/en-us/library/azure/jj613355.aspx
http://spatialreference.org/ref/epsg/25832/
http://spatialreference.org/ref/epsg/25832/
http://spatialreference.org/ref/sr-org/epsg3857-wgs84-web-mercator-auxiliary-sphere/
http://spatialreference.org/ref/sr-org/epsg3857-wgs84-web-mercator-auxiliary-sphere/
https://www.engineeringtoolbox.com/utm-latitude-longitude-d_1370.html
https://www.engineeringtoolbox.com/utm-latitude-longitude-d_1370.html
http://www.mesterkart.no/Ordliste.htm#UTM-sone
https://stackoverflow.com/questions/176137/java-convert-lat-lon-to-utm
https://stackoverflow.com/questions/176137/java-convert-lat-lon-to-utm
https://jamesmontemagno.github.io/GeolocatorPlugin/
https://jamesmontemagno.github.io/GeolocatorPlugin/
https://www.nuget.org/packages/Microsoft.IdentityModel.Clients.ActiveDirectory/
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/app-fundamentals/dependency-service/introduction
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/app-fundamentals/dependency-service/introduction
https://blog.xamarin.com/put-adal-xamarin-forms/
https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-authentication-libraries
https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-authentication-libraries

 References

68

[47] Microsoft, Access Tokens, 2018. Retrieved from: https://msdn.microsoft.com/en-us/li-

brary/windows/desktop/aa374909%28v=vs.85%29.aspx?f=255&MSPPError=-

2147217396 , Downloaded: 09.05.2018.

[48] Microsoft, Uri Class, 2018. Retrieved from: https://msdn.microsoft.com/en-us/li-

brary/system.uri(v=vs.110).aspx , Downloaded: 09.05.2018.

[49] Swagger, Bearer Authentication, 2018. Retrieved from: https://swagger.io/docs/specifi-

cation/authentication/bearer-authentication/ , Downloaded: 09.05.2018.

[50] Microsoft, HttpStatusCode Enumeration, 2018. Retrieved from: https://msdn.mi-

crosoft.com/en-us/library/system.net.httpstatus-

code%28v=vs.110%29.aspx?f=255&MSPPError=-2147217396 , Downloaded:

09.05.2018.

[51] J. Newton-King, Newtonsoft.Json, 2018. Retrieved from: https://www.nuget.org/pack-

ages/newtonsoft.json/ , Downloaded: 09.05.2018.

[52] Json, Introducing JSON, 2018. Retrieved from: https://www.json.org/ , Downloaded:

09.05.2018.

[53] Microsoft, Tuple Class, 2018. Retrieved from: https://msdn.microsoft.com/en-us/li-

brary/system.tuple(v=vs.110).aspx , Downloaded: 09.05.2018.

[54] J. Montemagno, Geolocation plugin for Xamarin and Windows, 2018. Hentet fra:

https://github.com/jamesmontemagno/GeolocatorPlugin , Downloaded: 19.02.18

[55] T. Kruse, TK.CustomMap.nuspec, 2018. Retrieved from: https://github.com/Tor-

benK/TK.CustomMap/blob/Development/nuget/TK.CustomMap.nuspec , Downloaded:

20.04.18

[56] T. Kruse, TK.CustomMap Extended Map Control, 2018. Retrieved from: http://tor-

benk.github.io/TK.CustomMap/ , Downloaded: 20.03.18

[57] Software Testing Fundamentals, Unit Testing, 2018. Retrieved from: http://softwaretest-

ingfundamentals.com/unit-testing/ , Downloaded: 10.05.2018.

[58] S. C. Roy, What is Integration Testing and How It is Performed?, 2018. Retrieved from:

https://www.softwaretestinghelp.com/what-is-integration-testing/ , Downloaded:

10.05.2018.

[59] Software Testing Fundamentals, Integration Testing, 2018. Retrieved from: http://soft-

waretestingfundamentals.com/integration-testing/ , Downloaded: 10.05.2018.

[60] Software Testing Class., System Testing: What? Why? & How?, 2018. Retrieved from:

http://www.softwaretestingclass.com/system-testing-what-why-how/, Downloaded:

07.05.2018.

[61] Software Testing Fundamentals, System Testing, 2018. Retrieved from: http://software-

testingfundamentals.com/system-testing/ , Downloaded: 10.05.2018.

[62] Software Testing Fundamentals, What is integration Testing and How It is Performed?,

2018. Retrieved from: http://softwaretestingfundamentals.com/acceptance-testing/ ,

Downloaded: 10.05.2018.

[63] O. Swart, Cloud vs. Hosted Services, what’s the difference?, 2011. Retrieved from:

http://www.itnewsafrica.com/2011/04/cloud-vs-hosted-services/, Downloaded:

08.05.2018

https://msdn.microsoft.com/en-us/library/windows/desktop/aa374909%28v=vs.85%29.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/windows/desktop/aa374909%28v=vs.85%29.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/windows/desktop/aa374909%28v=vs.85%29.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/system.uri(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.uri(v=vs.110).aspx
https://swagger.io/docs/specification/authentication/bearer-authentication/
https://swagger.io/docs/specification/authentication/bearer-authentication/
https://msdn.microsoft.com/en-us/library/system.net.httpstatuscode%28v=vs.110%29.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/system.net.httpstatuscode%28v=vs.110%29.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/system.net.httpstatuscode%28v=vs.110%29.aspx?f=255&MSPPError=-2147217396
https://www.nuget.org/packages/newtonsoft.json/
https://www.nuget.org/packages/newtonsoft.json/
https://www.json.org/
https://msdn.microsoft.com/en-us/library/system.tuple(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.tuple(v=vs.110).aspx
https://github.com/jamesmontemagno/GeolocatorPlugin
https://github.com/TorbenK/TK.CustomMap/blob/Development/nuget/TK.CustomMap.nuspec
https://github.com/TorbenK/TK.CustomMap/blob/Development/nuget/TK.CustomMap.nuspec
http://torbenk.github.io/TK.CustomMap/
http://torbenk.github.io/TK.CustomMap/
http://softwaretestingfundamentals.com/unit-testing/
http://softwaretestingfundamentals.com/unit-testing/
https://www.softwaretestinghelp.com/what-is-integration-testing/
http://softwaretestingfundamentals.com/integration-testing/
http://softwaretestingfundamentals.com/integration-testing/
http://www.softwaretestingclass.com/system-testing-what-why-how/
http://softwaretestingfundamentals.com/system-testing/
http://softwaretestingfundamentals.com/system-testing/
http://softwaretestingfundamentals.com/acceptance-testing/
http://www.itnewsafrica.com/2011/04/cloud-vs-hosted-services/

 References

69

[64] Custom Information Services, The Difference Between Hosted and Cloud Computing for

ERP Software, 2012. Retrieved from: http://www.erpsoftwareblog.com/2012/08/the-dif-

ference-between-hosted-and-cloud-computing-for-erp-software/, Downloaded:

08.05.2018

[65] A. B. Newman, Is a Cloud-based Solution the Same Thing as a Hosted Solution?, 2013.

Retrieved from: https://www.mitel.com/blog/cloud-based-solution-same-thing-hosted-

solution, Downloaded: 08.05.2018

[66] M. Rouse, pay-as-you-go cloud computing (PAYG cloud computing), 2015. Retrieved

from: https://searchstorage.techtarget.com/definition/pay-as-you-go-cloud-computing-

PAYG-cloud-computing, Downloaded: 08.05.2018

[67] Aleksandra Majkic, Mobile Cross Platform Becoming Feasible, 2016. Retrieved from:

https://www.execom.eu/blog/post/mobile-cross-platform-becoming-feasible , Down-

loaded: 09.05.2018.

[68] Cordova, Apache Cordova, 2018. Retrieved from: https://cordova.apache.org/ , Down-

loaded: 09.05.2018.

[69] SQA, The Normalisation Process, 2008. Retrieved from: https://www.sqa.org.uk/e-

learning/SoftDevRDS02CD/page_11.htm , Downloaded: 09.05.2018.

[70] Microsoft, Learn About ASP.NET SignalR, 2018. Retrieved from:

https://www.asp.net/signalr , Downloaded: 09.05.2018.

http://www.erpsoftwareblog.com/2012/08/the-difference-between-hosted-and-cloud-computing-for-erp-software/
http://www.erpsoftwareblog.com/2012/08/the-difference-between-hosted-and-cloud-computing-for-erp-software/
https://www.mitel.com/blog/cloud-based-solution-same-thing-hosted-solution
https://www.mitel.com/blog/cloud-based-solution-same-thing-hosted-solution
https://searchstorage.techtarget.com/definition/pay-as-you-go-cloud-computing-PAYG-cloud-computing
https://searchstorage.techtarget.com/definition/pay-as-you-go-cloud-computing-PAYG-cloud-computing
https://www.execom.eu/blog/post/mobile-cross-platform-becoming-feasible
https://cordova.apache.org/
https://www.sqa.org.uk/e-learning/SoftDevRDS02CD/page_11.htm
https://www.sqa.org.uk/e-learning/SoftDevRDS02CD/page_11.htm
https://www.asp.net/signalr

 Appendices

70

Appendices
Appendix A Project Assignment

Appendix B Project Goals

Appendix C WBS

Appendix D Gantt

Appendix E Requirements

Appendix F Concept Design

Appendix G Web Fundamentals

Appendix H User Manual

Appendix I Test Case Web

Appendix J Test Case Mobile

Appendix K Improved Database

Appendix A Project Assignment

Faculty of Technology, Natural Sciences and Maritime Sciences, Campus Porsgrunn

Address: Kjølnes ring 56, NO-3918 Porsgrunn, Norway. Phone: 35 57 50 00. Fax: 35 55 75 47.

PRH612 Bachelor's Thesis

Title: Innmelding i anlegg

HSN supervisor: Hans-Petter Halvorsen

External partner: Marius Dolven, Skagerak Energi AS

Task background:
Det viktigste ansvaret til nettselskapet er å sikre montørenes sikkerhet i felt. Man ønsker
derfor å se på digitale verktøy som montørene kan benytte for å sikre seg mot ulykker og få
bedre informasjon ute i felt.

Task description:
I dag, når montører skal inn i en nettstasjon må de ringe inn til driftssentralen for å melde
ifra, slik at man påser at anlegget er spenningsløst. Her ønsker vi en selvbetjent løsning hvor
montør selv melder ifra om dette elektronisk. Løsningen må bygges slik at den sikrer at HMS
krav er tilfredsstilt og at både kundesenter og driftssentral blir varslet.
Mulige løsninger vil være en app som varsler montør når han er i nærheten av en nettstasjon
for å sikre at innmelding blir registret evnt. en SMS løsning. Det vil også være nødvendig å se
på integrasjoner mot fagsystemer. Studentene vil måtte levere et løsningsforslag på mulige
løsninger i samråd med Skagerak og utvikle en applikasjon for å utføre innmeldingen i
anlegget.

Student category: IA

Practical arrangements:
Det er ønskelig at studentgruppa sitter regelmessig i Skagerak Energi sine lokaler, men ikke
noe krav.

Signatures:

Students (date and signature):

Supervisor (date and signature):

Appendix B Project Goals

Project Goals

Primary goals

The main goals in this project are to reduce the communication errors and increase HSE for

technician, who’s working in an electrical substation. A modern solution that are faster, simpler and

user-friendly. The system should contain a website for displaying information, a database to store

data, and a mobile application for creating tasks that notifies the website. The system should also

feature sign in method for authentication.

The mobile application should at least support one platform.

Competence goals

The experience this group should gain from this project, would be to increase their knowledge in

both .NET framework and mobile application development. They would also get a better insight of

the management tool scrum.

This group must also understand the existing system and provide a solution for potential

improvement. This requires the group to have fundamental knowledge in current technological

development and basic programming. They must also consider the database structure and its

vulnerability and design a user-friendly graphical user interface for both operators and technicians.

API Communication

IA6-6-18
GridNote

Database Mobile applicationWebsite
Administration and

documentation
API Communication

Active
Directory

NIS DMS

Google map

Database

Azure

ERwin

SQL server

Cloud server

Acquisition

Login

Data table

Map

Filter

GPS

GUI

Login

Call-in

Notification

Map

WBS

Project goals

Project scope

Gantt

System
Documentation

User Manual

User Guide

Test case

Xamarin

ASP.NET

Azure

VSTS

Appendix C WBS

ID Task
Mode

Task Name Duration Start Finish % Complete

1 Planning Phase 18 days Mon 08.01.18 Wed 31.01.18 100%
2 Group agreement 1 day Mon 08.01.18 Mon 08.01.18 100%
3 Obtain requirements from

Skagerak Energi
1 day Wed 10.01.18 Wed 10.01.18 100%

4 Brainstorm 2 days Thu 11.01.18 Fri 12.01.18 100%
5 WBS 2 days Mon 15.01.18 Tue 16.01.18 100%
6 Project goals 1 day Mon 15.01.18 Mon 15.01.18 100%
7 Research question 2 days Mon 15.01.18 Tue 16.01.18 100%

8 Meeting at Skagerak Energi 1 day Fri 19.01.18 Fri 19.01.18 100%

9 Approval of Project goal
and Research question

1 day Wed 24.01.18 Wed 24.01.18 100%

10 UML 1 day Mon 22.01.18 Mon 22.01.18 100%
11 Software Development

Plan
3 days Fri 19.01.18 Tue 23.01.18 100%

12 Report draft 2 days Mon 22.01.18 Tue 23.01.18 100%
13 1.Meeting 1 day Tue 30.01.18 Tue 30.01.18 100%
14 Planning Phase completed 1 day Wed 31.01.18 Wed 31.01.18 100%

15 Alpha 37 days? Thu 01.02.18 Fri 23.03.18 100%
16 System requirement &

design plan
5 days Thu 01.02.18 Wed 07.02.18 100%

17 User manual 1 day Thu 01.02.18 Thu 01.02.18 100%
18 Test Plan 1 day? Fri 02.02.18 Fri 02.02.18 100%
19 Test documentation 1 day? Mon 05.02.18 Mon 05.02.18 100%
20 API Requirements 1 day? Mon 12.02.18 Mon 12.02.18 100%
21 Database architecture 4 days? Mon 12.02.18 Thu 15.02.18 100%

22 Erwin 1 day? Mon 12.02.18 Mon 12.02.18 100%
23 SQL 1 day? Tue 13.02.18 Tue 13.02.18 100%
24 SQL query 1 day? Wed 14.02.18 Wed 14.02.18 100%
25 Azure database 1 day? Tue 13.02.18 Tue 13.02.18 100%
26 Database operating 1 day Thu 15.02.18 Thu 15.02.18 100%
27 UI design plan 2 days? Thu 15.02.18 Fri 16.02.18 100%
28 Login page 1 day? Thu 15.02.18 Thu 15.02.18 100%
29 Home page 1 day? Thu 15.02.18 Thu 15.02.18 100%
30 Map page 1 day? Thu 15.02.18 Thu 15.02.18 100%
31 Call-in page 1 day? Thu 15.02.18 Thu 15.02.18 100%
32 Preferences page 1 day? Thu 15.02.18 Thu 15.02.18 100%

33 Plan for user interface 1 day Fri 16.02.18 Fri 16.02.18 100%
34 UX plan 1 day? Fri 16.02.18 Fri 16.02.18 100%
35 Information architecture 1 day? Fri 16.02.18 Fri 16.02.18 100%

36 Functional analyse 1 day? Fri 16.02.18 Fri 16.02.18 100%

37 Human factors 1 day? Fri 16.02.18 Fri 16.02.18 100%
38 Human-computer

interaction
1 day? Fri 16.02.18 Fri 16.02.18 100%

39 Scenarios 1 day? Fri 16.02.18 Fri 16.02.18 100%
40 Plan for User experience 0 days Fri 16.02.18 Fri 16.02.18 100%

41 Mobile application 24 days? Mon 19.02.18 Thu 22.03.18 100%
42 Create page from UI 3 days Mon 19.02.18 Wed 21.02.18 100%
43 Create functions from

UX
3 days Tue 20.02.18 Thu 22.02.18 100%

44 Deploy alpha version of
mobile app

1 day? Thu 22.03.18 Thu 22.03.18 100%

45 Website 5 days? Tue 20.02.18 Mon 26.02.18 100%
46 Host website from Azure 1 day? Tue 20.02.18 Tue 20.02.18 100%

47 UI 3 days Wed 21.02.18 Fri 23.02.18 100%
48 Deploy alpha version 1 day? Mon 26.02.18 Mon 26.02.18 100%
49 Update documents 1 day? Wed 21.02.18 Wed 21.02.18 100%
50 Report 1 day? Wed 21.02.18 Wed 21.02.18 100%
51 WBS 1 day? Wed 21.02.18 Wed 21.02.18 100%
52 UML 1 day? Wed 21.02.18 Wed 21.02.18 100%
53 System development

plan
1 day? Wed 21.02.18 Wed 21.02.18 100%

54 Alpha version is deployed 1 day Fri 23.03.18 Fri 23.03.18 100%
55 2.Meeting 1 day? Mon 26.02.18 Mon 26.02.18 100%
56 Beta 10 days Mon 26.03.18 Fri 06.04.18 100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

Wed 31.01

100%

100%

100%

100%

100%

100%

100%

100%

100%

Thu 15.02

100%

100%

100%

100%

100%

Fri 16.02

100%

100%

100%

100%

100%

Fri 16.02

100%

100%

100%

100%

100%

100%

100%

100%

100%

Mon 26.02

01 08 15 22 29 05 12 19 26 05
Jan '18 Feb '18 Mar '18

Task

Split

Milestone

Summary

Project Summary

Inactive Task

Inactive Milestone

Inactive Summary

Manual Task

Duration-only

Manual Summary Rollup

Manual Summary

Start-only

Finish-only

External Tasks

External Milestone

Deadline

Progress

Manual Progress

 1 Page 4

Project: Grid note
Date: Mon 30.04.18

100%

Fri 23.03

05 12 19 26 02 09 16 23 30 07 14 21 28 04
Apr '18 May '18 Jun '18

Task

Split

Milestone

Summary

Project Summary

Inactive Task

Inactive Milestone

Inactive Summary

Manual Task

Duration-only

Manual Summary Rollup

Manual Summary

Start-only

Finish-only

External Tasks

External Milestone

Deadline

Progress

Manual Progress

 3 Page 4

Project: Grid note
Date: Mon 30.04.18

ID Task
Mode

Task Name Duration Start Finish % Complete

57 Review from alpha release 1 day Mon 26.03.18 Mon 26.03.18 100%

58 Test plan 1 day Tue 27.03.18 Tue 27.03.18 100%
59 Test documentation 1 day Tue 27.03.18 Tue 27.03.18 100%
60 Reevalueate and Improved

UI and UX
1 day Wed 28.03.18 Wed 28.03.18 100%

61 Update mobile application 5 days Wed 28.03.18 Tue 03.04.18 100%

62 UI 4 days Wed 28.03.18 Mon 02.04.18 100%
63 UX 4 days Thu 29.03.18 Tue 03.04.18 100%
64 SQL 3 days Thu 29.03.18 Mon 02.04.18 100%
65 Update website 4 days Wed 28.03.18 Mon 02.04.18 100%
66 UI 3 days Wed 28.03.18 Fri 30.03.18 100%
67 UX 3 days Thu 29.03.18 Mon 02.04.18 100%
68 Update documents 2 days Wed 28.03.18 Thu 29.03.18 100%
69 WBS 1 day Wed 28.03.18 Wed 28.03.18 100%
70 UML 1 day Wed 28.03.18 Wed 28.03.18 100%
71 Report 1 day Thu 29.03.18 Thu 29.03.18 100%
72 Deploy beta version 1 day Thu 05.04.18 Thu 05.04.18 100%
73 3.Meeting 1 day Fri 06.04.18 Fri 06.04.18 100%
74 RC 13 days? Mon 09.04.18 Wed 25.04.18 100%
75 Review from beta release 1 day Mon 09.04.18 Mon 09.04.18 100%
76 Test plan 1 day Tue 10.04.18 Tue 10.04.18 100%
77 Test documentation 1 day Tue 10.04.18 Tue 10.04.18 100%
78 Reevalueate and Improved

UI and UX
1 day Wed 11.04.18 Wed 11.04.18 100%

79 Update mobile application 7 days Wed 11.04.18 Thu 19.04.18 100%

80 Active Directory
connection

2 days Thu 12.04.18 Fri 13.04.18 100%

81 UI 6 days Wed 11.04.18 Wed 18.04.18 100%
82 UX 6 days Thu 12.04.18 Thu 19.04.18 100%
83 SQL 3 days Thu 12.04.18 Mon 16.04.18 100%
84 Update website 7 days Wed 11.04.18 Thu 19.04.18 100%
85 Active Directory

connection
2 days Thu 12.04.18 Fri 13.04.18 100%

86 UI 6 days Wed 11.04.18 Wed 18.04.18 100%
87 UX 6 days Thu 12.04.18 Thu 19.04.18 100%
88 Update documents 4 days Fri 13.04.18 Wed 18.04.18 100%
89 User manual 2 days Fri 13.04.18 Mon 16.04.18 100%
90 WBS 1 day Mon 16.04.18 Mon 16.04.18 100%
91 UML 1 day Mon 16.04.18 Mon 16.04.18 100%
92 Report 3 days Mon 16.04.18 Wed 18.04.18 100%
93 Deploy RC version 1 day Fri 20.04.18 Fri 20.04.18 100%
94 4.Meeting 1 day? Wed 25.04.18 Wed 25.04.18 100%
95 RTM 15 days? Thu 26.04.18 Wed 16.05.18 100%
96 Review from RTM release 1 day Tue 01.05.18 Tue 01.05.18 100%
97 Test plan 1 day Wed 02.05.18 Wed 02.05.18 100%
98 Test documentation 1 day Wed 02.05.18 Wed 02.05.18 100%
99 Reevalueate and Improved

UI and UX
1 day Thu 03.05.18 Thu 03.05.18 100%

100 Update mobile application 6 days Fri 04.05.18 Fri 11.05.18 100%
101 Active Directory

connection
2 days Fri 04.05.18 Mon 07.05.18 100%

102 UI 3 days Tue 08.05.18 Thu 10.05.18 100%
103 UX 3 days Wed 09.05.18 Fri 11.05.18 100%
104 SQL 2 days Wed 09.05.18 Thu 10.05.18 100%
105 Update website 5 days Fri 04.05.18 Thu 10.05.18 100%
106 Active Directory

connection
2 days Fri 04.05.18 Mon 07.05.18 100%

107 UI 3 days Tue 08.05.18 Thu 10.05.18 100%
108 UX 2 days Wed 09.05.18 Thu 10.05.18 100%
109 4.Meeting 1 day? Mon 14.05.18 Mon 14.05.18 100%
110 Complete documents 9 days Thu 26.04.18 Tue 08.05.18 100%
111 User manual 1 day Tue 08.05.18 Tue 08.05.18 100%
112 WBS 1 day Thu 26.04.18 Thu 26.04.18 100%
113 UML 1 day Thu 26.04.18 Thu 26.04.18 100%
114 Report 3 days Fri 27.04.18 Tue 01.05.18 100%
115 Deploy RTM version 1 day Tue 15.05.18 Tue 15.05.18 100%
116 Report Correction nr.1 1 day? Tue 08.05.18 Tue 08.05.18 100%
117 Review Report nr.1 1 day? Wed 09.05.18 Wed 09.05.18 100%
118 Report Correction nr.2 1 day? Thu 10.05.18 Thu 10.05.18 100%
119 Report Review nr.2 1 day? Fri 11.05.18 Fri 11.05.18 100%
120 Deliver report with

attachment
1 day Wed 16.05.18 Wed 16.05.18 100%

01 08 15 22 29 05 12 19 26 05
Jan '18 Feb '18 Mar '18

Task

Split

Milestone

Summary

Project Summary

Inactive Task

Inactive Milestone

Inactive Summary

Manual Task

Duration-only

Manual Summary Rollup

Manual Summary

Start-only

Finish-only

External Tasks

External Milestone

Deadline

Progress

Manual Progress

 2 Page 4

Project: Grid note
Date: Mon 30.04.18

100%

100%

100%

Wed 28.03

100%

100%

100%

100%

100%

100%

100%

100%

Thu 05.04

100%

100%

100%

100%

Wed 11.04

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

Fri 20.04

100%

100%

100%

100%

Thu 03.05

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

Tue 15.05

100%

100%

100%

100%

Wed 16.05

05 12 19 26 02 09 16 23 30 07 14 21 28 04
Apr '18 May '18 Jun '18

Task

Split

Milestone

Summary

Project Summary

Inactive Task

Inactive Milestone

Inactive Summary

Manual Task

Duration-only

Manual Summary Rollup

Manual Summary

Start-only

Finish-only

External Tasks

External Milestone

Deadline

Progress

Manual Progress

 4 Page 4

Project: Grid note
Date: Mon 30.04.18

Appendix E Requirements

F: Potential requirement in Future. Not present.

Req # Functional requirement Priority Date Reviewed
1 Working login/logout 1 26.01.2018
2 Can set start and end date for work 1 26.01.2018
3 Can search for substation 1 26.01.2018
4 Can logout from work 1 26.01.2018
5 Can only work on one substation at a time 1 26.01.2018
6 Can create new work 1 26.01.2018
7 Can communicate with database 1 26.01.2018
8 Working map with stations located 2 26.01.2018
9 Get notification when you are close to a substation 2 26.01.2018

10 Get notification 15 min before work runs out 2 26.01.2018
11 Get notification: Lock the door 2 26.01.2018
12 Can edit end date for a work 2 26.01.2018
13 Can set preferences 2 26.01.2018
14 Can edit substation for a work 2 26.01.2018
15 Get notification: No signal 2 26.01.2018
16 Get notification: No GPS (when creating work) 2 26.01.2018
17 Can add more users for work F 26.01.2018
18 Can view notification list F 26.01.2018
19 User can send feedback on mail F 26.01.2018

Req # Non-functional requirement Priority Date Reviewed
1 Can login in less than 15 seconds 1 26.01.2018
2 Safe encryption on login 1 26.01.2018
3 Less than 1 out of 20 crashes during startup 1 26.01.2018
4 Less than 1 out of 10 crashes during walkthrough 1 26.01.2018
5 Can startup in less than 20 seconds 1 26.01.2018
6 No unnecessary buttons 1 26.01.2018
7 Structured and user-friendly layout 1 26.01.2018
8 Can remember preferences 2 26.01.2018
9 Rotating button for selecting duration 2 26.01.2018

10 Works on Android and iOS F 26.01.2018
11 English and Norwegian language F 26.01.2018

Mobile app

Page 1 of 2

Appendix E Requirements

Req # Functional requirement Priority Date Reviewed
1 Working login/logout 1 26.01.2018
2 Table must contain: name, number, station, start time, end time, status 1 26.01.2018
3 Status will indicate if the endtime has run out 1 26.01.2018
4 Can work with popular web browsers (Chrome, Edge, Firefox, IE) 1 26.01.2018
5 Can see historical data 1 26.01.2018
6 Can add a work row manually F 26.01.2018
7 Can export table to excel F 26.01.2018
8 Can delete work row from table F 26.01.2018
9 Can expand work row information F 26.01.2018

10 Can chat with technicians F 26.01.2018
Req # Non-functional requirement Priority Date Reviewed

1 Can login in less than 15 seconds 1 26.01.2018
2 Safe encryption on login 1 26.01.2018
3 Less than 1 out of 20 crashes during startup 1 26.01.2018
4 Less than 1 out of 10 crashes during walkthrough 1 26.01.2018
5 Can startup in less than 20 seconds 1 26.01.2018
6 No unnecessary buttons 1 26.01.2018
7 Structured and user-friendly layout 1 26.01.2018
8 Can remember settings 2 26.01.2018
9 English and Norwegian language F 26.01.2018

Website

Page 2 of 2

Concept UI design for mobile application

LOADING

Loading page

LOADING LOADING

1 of 8

Appendix F Concept Design

Welcome

Login

Username

Password

Logo

Login page

Welcome

Login

Username

Password

Logo

Username

Logo

Password

2 of 8

Login

HOMEPAGE HOMEPAGE

Home page

HOMEPAGE
SEARCH

MAP

3 of 8

SET TIME

4 of 8

Time page

TIME PAGE

OKCANCEL

START TIME

Months Days

END TIME (Day, Remain)

TIME

TIME PAGE

OK

START TIME

Month Day

END TIME

TIME

Home page w/ status

HOMEPAGE
UPDATE

STATUS /WORKSTATUS /WORK

DONE?

HOMEPAGE
UPDATE

DONE?

STATUS

HOMEPAGE
UPDATE

Remain time

End time (day, time)

OK

DONE?

5 of 8

6 of 8

Skagerak Energi

Username
Password

Login

Gridnote

[Logo]

Dashboard

Dashboard History Preference Logout

[Trendline] (View 7 days) (Overview of stations with active
workers)

Activities Map

Active workers

User
[Login time]

Search Filter

 Station name Fullname Phone Date Start time Remain time Status

7 of 8

[System status]

PDFExcel

History

Dashboard History Preference Logout

[Trendline] (Display from quick view)

Graph

History data

User
[Login time]

Search Filter

 Station name Fullname Phone Date Start time Remain time Status

8 of 8

Week Month YearQuick view

[System status]

PDFExcel

Appendix G Web Fundamentals

1 Web Fundamentals

This chapter gives a brief explanation of some of the fundamentals of web development. What will

be detailed are the terms front-end and back-end, HTML, CSS and JavaScript.

1.1 Front-end and Back-end
Front-end and back-end are terms used in software engineering referring to two separate parts of a

software application. Front-end being the presentation layer, which is what the user sees and

interacts with. This is often referred to as the client side, as it is the part of the application that the

client operates on. Prime examples being operations involving the user interface.

The back end is the data access layer, which contains all the operations working in the background.

It is often called the server side because it is where all server operations take place. Examples being

operations involving the database, automated functions and API handling. [1]

1.2 HTML
Hyper Text Mark-up Language (HTML) is a mark-up language that tells your browser how to

structure web pages that one visits. HTML is the standard mark-up language for the internet. HTML

uses tags that enclose, mark up or wrap letters to make them act a certain way. Each element has a

start tag and an end tag, with the content in between. Different tags indicate different ways the

content should be presented. In Figure 1-1 we see an example of how html is used to display a page

with some text. The “body” start and end tag contains the content that will be shown on the page.

The “p” tag is used for paragraphs and contains the tags “b” and “i” making the content bold or

italic. [2]

Figure 1-1 HTML example

1.3 CSS
Cascading Style Sheets (CSS) is used to style the content displayed on a web page. The style sheet

contains selectors containing properties that describe how content should be displayed. For

example, if a page inherits from a stylesheet that has properties set for the “h1” selector. Any

content with a h1 tag on the HTML page will get the properties from that selector in the stylesheet.

In Figure 1-2 we see how the text “Hello World!” will get the properties set for selector “h1” in a

CSS document shown in Figure 1-3. [3]

Appendix G Web Fundamentals

 Figure 1-2 HTML referencing CSS Figure 1-3 CSS Stylesheet

1.4 JavaScript
Client-side JavaScript is used to implement all kinds of features other than just static text. Features

like dynamically updating content, multimedia (audio and video), maps, games, all sorts of APIs,

running code and so on. For HTML to understand it’s reading JavaScript code, one only needs to

add the “script” tag. Figure 1-4 shows a typical example with a button that when clicked adds a

new paragraph with the text “Button clicked!”. [4]

Figure 1-4 JavaScript example

[1] Pluralsight, What’s the difference between the Front-End and Back-End?, 2015. Retrieved

from: https://www.pluralsight.com/blog/film-games/whats-difference-front-end-back-end,

Downloaded: 08.05.2018.

[2] C. Mills et al., Getting started with HTML, 2018. Retrieved from:

https://developer.mozilla.org/en-

US/docs/Learn/HTML/Introduction_to_HTML/Getting_started, Downloaded: 08.05.2018.

[3] Suterj et al., Learn to style HTML using CSS, 2017, Retrieved from:

https://developer.mozilla.org/en-US/docs/Learn/CSS, Downloaded: 08.05.2018.

[4] C. Mills et al., JavaScript, 2017. Retrieved from:

https://developer.mozilla.org/enUS/docs/Learn/JavaScript, Downloaded: 08.05.2018.

https://www.pluralsight.com/blog/film-games/whats-difference-front-end-back-end
https://www.pluralsight.com/blog/film-games/whats-difference-front-end-back-end
https://www.pluralsight.com/blog/film-games/whats-difference-front-end-back-end
https://www.pluralsight.com/blog/film-games/whats-difference-front-end-back-end
https://www.pluralsight.com/blog/film-games/whats-difference-front-end-back-end
https://www.pluralsight.com/blog/film-games/whats-difference-front-end-back-end
https://www.pluralsight.com/blog/film-games/whats-difference-front-end-back-end
https://www.pluralsight.com/blog/film-games/whats-difference-front-end-back-end
https://www.pluralsight.com/blog/film-games/whats-difference-front-end-back-end
https://www.pluralsight.com/blog/film-games/whats-difference-front-end-back-end
https://www.pluralsight.com/blog/film-games/whats-difference-front-end-back-end
https://www.pluralsight.com/blog/film-games/whats-difference-front-end-back-end
https://www.pluralsight.com/blog/film-games/whats-difference-front-end-back-end
https://www.pluralsight.com/blog/film-games/whats-difference-front-end-back-end
https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML/Getting_started
https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML/Getting_started
https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML/Getting_started
https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML/Getting_started
https://developer.mozilla.org/en-US/docs/Learn/CSS
https://developer.mozilla.org/en-US/docs/Learn/CSS
https://developer.mozilla.org/en-US/docs/Learn/CSS
https://developer.mozilla.org/en-US/docs/Learn/CSS
https://developer.mozilla.org/en-US/docs/Learn/JavaScript
https://developer.mozilla.org/en-US/docs/Learn/JavaScript
https://developer.mozilla.org/en-US/docs/Learn/JavaScript

Appendix H User Manual

1

1 Mobile application – User Manual
This user manual will guide you through the application and show you how you can create, edit

and complete a work.

Step 1.

When the app is open you need to sign in before using the application Figure 1-1. Press

“PÅLOGGING” button and write your username and password.

Figure 1-1 Login page

Appendix H User Manual

2

Step 2.

After you logged in you will come to the homepage, Figure 1-2. Here can you select the station

you want to work at or you can search for it. Press the station you want to work at (red mark)

and then select “VELG ARBEIDSTID” button to continue (shows in Figure 1-3). When a

station is selected the information about it will be shown in a white popup box. If you don’t

find the station you are looking for you can press the search button (top left corner).

 Figure Figure 11--32 HomepageHomepage Figure Figure1-3 1Home page marked-4 Search page

Appendix H User Manual

3

Step 3.

 When the search button is pressed, you will be sent to the search page, Figure 1-4. You can

search for the station you want using the name or the id of the station. In Figure 1-5 is an

example of a search of a station in “Porsgrunn”. Several alternative choices will be listed below.

Click the station you want to work at to continue to the time page.

 Figure 1-4 Search page Figure 1-5Figure 1 Search for "Porsgrunn”-5

Appendix H User Manual

4

Step 4.

On this page you will get the option to choose how long you going to work at the station. Click

the 00:00 button in the middle of the screen in Figure 1-6. You will get up an android time

picker where you can choose your end time, shows in Figure 1-7. Press “TRYKK HER FOR

BEKREFTE VALG AV ARBEIDSTID” button to confirm the time, shows in Figure 1-8. Press

“START ARBIED” to create the work. After the button is pressed you will be sent to update

page.

Figure Figure 11--66 Time pageTime page Figure Figure 11--77 Time pickerTime picker

 Figure 1-8 Time selected

Appendix H User Manual

5

Step 5.

In the update page, Figure 1-9 you will get an overview about the work you have created. On

this page you have two options. One is to complete the work by pressing the “ARBEID

FERDIG” button. If you do that you will be sent to Homepage again, the work you have created

will be ended. The second options are the “ENDRE” button. When this button is pressed you

will be sent to the time page. Here can you edit your old end time, just the way you did last

time.

 Figure 1Figure 1--99 Update pageUpdate page

2 Website – User Manual
When logged in the front page of the website, Figure 2-1. This is the page that will be shown

in the operations centre. This page shows an overview over all technicians that are in a work

right now. In the “Søk” textbox it is possible to search in the table to make it easier to find what

you are looking for. The text “Aktive” shows how many technicians that are in a work right

Appendix H User Manual

6

now. The status in the table describes if the technicians work has run out of time or not. If status

is marked with a cross it means that the technicians time has run out, then the technicians need

to edit their time.

Figure 2-1 Status page website

If “mer info” button is pressed a map will be shown, Figure 2-2. In this map you can see where

the technicians work. The green mark is where the time is not run out. Red marks are where

the time has run out. On the map you can zoom out and in and move around. The same abilities

you have on a google map.

Appendix H User Manual

7

Figure 2-2 Status page with map

On the top right corner, you can press the “Historikk” button that will send you to our history

page Figure 2-3. In the history page can you see every work created. You can search after

example name, address or date.

Figure 2-3 History page

Appendix I Test Case Web

Test Case Document: Website.

No. Test Case: Date Test Status (✓ , X) Comment Priority (1,2,3, 4)
1 void UTM2Deg(double easting, double northing, out double latitude, out double longitude) 19.03.2018 ✓ Convert UTM to degrees. 1
2 string GetWorkQuantityHistory() 19.03.2018 ✓ Count every work with status = 2. 1
3 void GetPoints(string, out List<double>, out List<double>, out List<string>, out List<string> , out List<string> , out List<string>) 19.03.2018 ✓ Get map pins on what you have search on. 1
4 void btnMoreInfo_Click(object sender, EventArgs e) 19.03.2018 ✓ Show/ hide map. 1

No. Test Case: Date Test Status (✓ , X) Comment Priority (1,2,3, 4)
5 Loging from one user to another? 19.03.2018 ✓ its possible to log from one user to another. 1
6 Can add a work row manually 19.03.2018 X Potential requirement in future. 4
7 Can delete work row from table 19.03.2018 X Potential requirement in future. 4
8 Can export table to excel 19.03.2018 X Potential requirement in future. 4
9 Can expand work row information 20.03.2018 X Potential requirement in future. 4

10 Logout 20.03.2018 ✓ User will be forget and you will need to login again. 1
11 Login 19.03.2018 ✓ Login using AD works. 1
12 Can you see historic data? 20.03.2018 ✓ Historic data can be seen on Historic page. Status = 2. 2
13 Does the connection to the database work? 20.03.2018 ✓ Connection with SQL works. 1
14 Does the connection to Azure works 20.03.2018 ✓ Yes. 1
15 Working map with stations located? 20.03.2018 ✓ Yes. 1
16 Are you able to see a work on the website? 20.03.2018 ✓ Yes. 4
17 Can remember settings 20.03.2018 X Potential requirement in future. 3
18 Table must contain: name, number, station, start time, end time, status 20.03.2018 ✓ Needed more coloums: ID, location and type. 1
19 Status will indicate if the endtime has run out 20.03.2018 ✓ Azure will change the status when endtime run out. 2
20 Search in table 20.03.2018 ✓ Can search for name, station , Id, type, phonenumber, location and date. 1
21 Login on multiple device 21.03.2018 ✓ No problem. 1
22 English and Norwegian language 21.03.2018 X Potential requirement in future. 4
23 Can chat with technicians 20.03.2018 X Potential requirement in future. 4
24 Is station pins seen on map 20.03.2018 ✓ Works where status = 1 or 3 will be seen on the map. 1
25 Login twice? 20.03.2018 ✓ you cant login twice. 1

No. Test Case: Date Test Status (✓ , X) Comment Priority (1,2,3, 4)
26 Does the program work in different web browsers? 21.03.2018 X Prefer Chrome. Requirement in future. 3
27 Does the application freeze 21.03.2018 ✓ No. 1
28 No unnecessary buttons 21.03.2018 ✓ All button have a function. 1
29 Structured and user-friendly layout 21.03.2018 ✓ Yes. 1
30 does every tool work? 21.03.2018 ✓ Every tool works. 1

No. Test Case: Date Test Status (✓ , X) Comment Priority (1,2,3, 4)
31 Can login in less than 15 seconds 21.03.2018 ✓ Yes. 2
32 Less than 1 out of 20 crashes during startup 21.03.2018 ✓ Tested 0/20 crashes. 1
33 Less than 1 out of 10 crashes during walkthrough 21.03.2018 ✓ Tested 0/10 crashes. 2
34 Can startup in less than 20 seconds 21.03.2018 ✓ No problem with startup. 1
35 Is the user data secure? 21.03.2018 ✓ Yes AD login make sure of that. 1

Integration testing

Unit testing

System testing

Acceptance Testing

Appendix J Test Case Mobile

Test Case Document mobile app

No. Test Case: Date Test Status (✓ , X) Comment Priority (1,2,3, 4)
1 async Task<string> returnId() 22.03.2018 ✓ Id from the work created will be returned. 1
2 void extractList(List<STATION> stations, ref List<string>localstation) 22.03.2018 ✓ No comments 1
3 async void CompletedButtonOnClicked(object sender, EventArgs e) 22.03.2018 ✓ Status in work table will be 2 when button clicked. 1
4 async Task GetListOfStations() 22.03.2018 ✓ No comments 1
5 async void CheckUserHasWork() 22.03.2018 ✓ No comments 1
6 void UserMap_PinSelected(object sender, TKGenericEventArgs<TKCustomMapPin> e) 22.03.2018 ✓ No comments 1

No. Test Case: Date Test Status (✓ , X) Comment Priority (1,2,3, 4)
7 Change work time 22.03.2018 ✓ You can edit work time after created a work. 1
8 Loging from one user to another? 22.03.2018 ✓ Works fine. 1
9 Logout, forgetting information correctly? 22.03.2018 ✓ Information will be forgot. 1

10 Does map updates when user moves 22.03.2018 ✓ The map will be updated whil the user moves. 2
11 Does the connection to Azure works 23.03.2018 ✓ Yes. 1
12 Does the connection to the database work? 23.03.2018 ✓ Yes. 1
13 Can create new work? 23.03.2018 ✓ New work will be saved in the database. 1
14 Login 23.03.2018 ✓ Login using AD from skagerak. 1
15 Logout 23.03.2018 ✓ Logout works. 1
16 Get notification 15 min before work runs out 23.03.2018 ✓ You will get notification 5 min before works runs out. 3
17 End work 23.03.2018 ✓ The status will change when you end a work. 1
18 Search for station 23.03.2018 ✓ Search for all station in the database. 1
19 Can set end date for work 23.03.2018 ✓ After station is select. End date can med selected. 1
20 Get notification: Lock the door 23.03.2018 ✓ When complete button is clicked a notification will pop up. 3
21 Are you able to see the map 23.03.2018 ✓ The map is shown in homepage. 1
22 Is station pins seen on map 23.03.2018 ✓ Yes. 1
23 Do you get notification when you are close to a substation? 23.03.2018 X Potential requirement in future. 3
24 Can set preferences 23.03.2018 X Potential requirement in future. 3
25 Can add more users for work 23.03.2018 X Potential requirement in future. 4
26 Can view notification list 23.03.2018 X Potential requirement in future. 4
27 User can send feedback on mail 23.03.2018 X Potential requirement in future. 4
28 Get notification: No signal 23.03.2018 X Potential requirement in future. 3
29 Get notification: No GPS (when creating work) 23.03.2018 X Potential requirement in future. 3
30 Can only work on one substation at a time? 23.03.2018 ✓ You need to end your work before you start a new one. 1
31 Working map with stations located? 23.03.2018 ✓ Yes. 1
32 Can remember preferences 23.03.2018 X Potential requirement in future. 3
33 Rotating button for selecting duration 23.03.2018 X Antoher time selecting button has been used insted. 3
34 Login on multiple device 26.03.2018 ✓ No problem. 1
35 English and Norwegian language 26.03.2018 X Potential requirement in future. 4
36 Does it work on mobile device 26.03.2018 ✓ Yes. 1
37 If there is work, can it be show on other device 26.03.2018 ✓ Yes. 1
38 Login twice? 22.03.2018 ✓ Can't login twice. 1
39 Start and end date works? 22.03.2018 ✓ Right start and end date will be saved in the database. 1

No. Test Case: Date Test Status (✓ , X) Comment Priority (1,2,3, 4)
40 does every tool work? 26.03.2018 X Preference tools dosent work. Requirement in the future. 1
41 Does the application freeze 26.03.2018 ✓ No. 1
42 Works on Android and iOS 26.03.2018 X Only works on android. Works on IOS is a requirement in the future. 4
43 No unnecessary buttons 26.03.2018 X Buttons on preference page dosent work. Requirement in the future. 1

No. Test Case: Date Test Status (✓ , X) Comment Priority (1,2,3, 4)
44 Structured and user-friendly layout 26.03.2018 ✓ Yes. 1
45 Can login in less than 15 seconds 26.03.2018 ✓ Yes. 2
46 Less than 1 out of 20 crashes during startup 26.03.2018 ✓ Need to accept wifi and location on app before start. 1
47 Less than 1 out of 10 crashes during walkthrough 26.03.2018 ✓ No problems during walkthrough. 1
48 Can startup in less than 20 seconds 26.03.2018 ✓ Yes. 2
49 Is the user data secure? 26.03.2018 ✓ The app is secure with a login page. 1

Integration testing

Unit testing

System testing

Acceptance Testing

USER

WORK

TRAFOTYPE

STATIONTYPE

PROVINCESTATION

user_idPK

first_name

last_name

phone_number

idPK

start_time

end_time trafo_type_idPK

trafo_type

station_idPK

station_type

province_idPK

province

status

actual_end_time

station_idPK

number_of_customers

address

station_location_x

station_location_y

type_idFK

province_idFK

trafo_type_idFK

station_idFK

user_idFK

Appendix K Improved Database

	WBS-IA6-6-18.vsdx
	Page-1

	Drawing1.vsdx
	Page-1

